Logo Studenta

Apuntes-Ingreso-MATEMATICA

¡Este material tiene más páginas!

Vista previa del material en texto

Universidad Tecnológica Nacional 
Facultad Regional Santa Fe 
 
 
 
 
 
 
Tec. en Mecatrónica 
 
 
Capítulo 1: Conjuntos Numéricos 
 
1. Números naturales 
Al conjunto de los números Naturales los simbolizamos con la letra . Su notación 
conjuntista, es la siguiente: . 
 Mientras que indicaremos con . 
1.1.Operaciones y propiedades: 
Adición o Suma: 
La suma es una Operación Cerrada, es dicir, la suma de dos números naturales da 
como resultado otro natural. 
 
 La suma verifica la Propiedad Conmutativa: . 
 La suma verifica la Propiedad Asociativa: . 
 Existencia de Elemento Neutro: 
 . 
 La suma verifica la Propiedad Cancelativa: . 
Resta o Diferencia: 
La resta no es una Operación Cerrada ya que la diferencia entre dos números 
naturales no siempre da como resultado un número natural. Sólo se obtiene un número 
natural si el minuendo es mayor que el sustraendo. 
 
 
La última expresión indica que la sustracción es la operación inversa de la adición. 
 La diferencia no verifica la Propiedad Conmutativa: . 
 La diferencia no verifica la Propiedad Asociativa: . 
 La diferencia verifica la Propiedad Cancelativa: . 
 Si la diferencia es cero. Si . 
Sumas algebraidas: 
Una suma algebraica de números naturales es una sucesión de sumas y restas. 
 
 
 
Universidad Tecnológica Nacional 
Facultad Regional Santa Fe 
 
 
 
 
 
 
Tec. en Mecatrónica 
 
 
 
Regla de Supresión de Paréntesis: 
 
 
 
 
 
 
Ejemplo: 
o 
o 
o 
Multiplicación o Producto: 
Definición: 
m y n se denominan factores. 
 Ley de cerradura: . 
 Propiedad Conmutativa: . 
 Existencia de Elemento neutro: 
 Propiedad Asociativa: . 
 Propiedad distributiva del producto respecto a la suma o resta: 
 
 
 
 Se llama múltiplo de un número natural n al producto de n por cualquier número 
natural. 
División o Cociente: 
 
 Donde m se denomina dividendo, n se denomina divisor y t se denomina cociente. 
Para que la operación sea posible en el conjunto de los números Naturales debe 
ser el dividendo múltiplo del divisor. 
Ejemplo: 
 La división no verifica la propiedad de cerradura, salvo que se verifique la 
condición indicada en la definición. 
 La división no verifica la Propiedad Asociativa: . 
 La división no verifica la Propiedad Conmutativa: . 
n veces 
 
 
 
Universidad Tecnológica Nacional 
Facultad Regional Santa Fe 
 
 
 
 
 
 
Tec. en Mecatrónica 
 
 
 La división verifica la Propiedad Distributiva con respecto a la suma algebraica 
sólo a derecha 
 . 
 NO es posible dividir por cero. 
 
Ejercicios 1: 
1) Suprimir los paréntesis y calcular la suma algebraicas: 
a) 16 + ( 15 – 2 ) + ( 7 – 3 ) + 3= 
b) ( 35 – 6 ) - ( 9 – 6 ) + 16= 
c) 30 – [ 4 + ( 12 – 4) – 3 [ (10 – 3 ) ] ]= 
d) 40 + (23 – 7) + [ 7 + (5 – 3). 4]= 
2) Compré en una librería crayones, lápices y cuadernos. Por los cuadernos pagué $14 y por los 
lápices $7. Si todo me costó $30.¿Cuánto pagué por los crayones? 
3) Compré una revista, pagué con un billete de $20. El cajero me pidió dos pesos y me devolvió 
un billete de $5. ¿Cuánto me costó la revista? 
4) Resolver aplicando propiedades: 
a) 6.( 3 + 4 )= 
b) ( 11 – 4 ). 3= 
c) ( 3 + 5 ). (3 – 2)= 
d) (10 – 3 ). (5 – 2)= 
e) 2[ 3 ( 2 – 5) ] + 6 ( 4 – 1 ) – [ 12 (6 – 5 ) ]= 
f) 3 (5 – 1) + 6 (4 – 1 + 3 ) – 2 ( 15 – 6 – 7)= 
g) {25 + [6 (5 – 3 ) + 5 ( 8 – 3 – 2 )]}= 
h) (12 – 4 + 6 – 8):2 = 
i) 60- {[ 5( 6 – 3 ) + ( 8 – 2) :3 ] 2}= 
j) 15 – 12 : 3 + 2 + 6:3= 
k) [ 5 ( 4 – 2 )+20: (4 + 1) + 1] : 5= 
l) { [ 18 – 6 – 2 ( 8 – 4) + 3 (5 – 2) + 2 ]:3 } 2 = 
5) Despejar x de las siguientes igualdades: 
a) 8x – 5 = 3x + 20 
b) 4x + 2 = 3x + 6 
c) 2x + 5x = 24 – 3 
 
 
 
Universidad Tecnológica Nacional 
Facultad Regional Santa Fe 
 
 
 
 
 
 
Tec. en Mecatrónica 
 
 
d) 3x + 10= 5x + 4 
e) 3x + 2 + 8x = x + 20 – 2(7 – 2 )+ 2 
6) El triple de un número menos 3 es igual al doble del número más 2 ¿Cuál es el número? 
7) El perímetro de un campo rectangular es de 1100 metros. Si un lado mide 20 metros más que el 
otro ¿Cuánto miden los lados? 
8) Por una mesa con una silla pagué $70. Si la mesa cuesta $50 más que la silla. ¿Cuál es el 
precio de la mesa y cuál es el precio de la silla? 
 
2. Números Enteros: 
El conjunto de los Números Enteros y se lo simboliza con la letra . Está formado por 
el conjunto de los números Naturales a los que también se lo llama el conjunto de los 
Enteros Positivos ( , el cero y un nuevo conjunto llamado los Enteros Negativos ( ). 
 
 Todo número entero tiene opuesto, es decir, si consideramos el número entero a, 
su opuesto es el número –a. La suma de un número entero y su opuesto es igual a 
cero 
 . 
 
2.1.Operaciones y propiedades: 
Adición: 
 Se verifica la Ley de Cerradura, es decir, la suma de dos números enteros da 
como resultado otro número entero: . 
 Se verifica la Propiedad Conmutativa: . 
 Se verifica la Propiedad asociativa: . 
 Existe Elemento Neutro, que es el cero: . 
Resta: 
 Se verifica la Ley de Cierre, es decir, la diferencia o resta de dos números enteros 
da como resultado otro número entero: . 
 Para restar dos números enteros al minuendo se le suma el opuesto del 
sustraendo 
 
 
 
Universidad Tecnológica Nacional 
Facultad Regional Santa Fe 
 
 
 
 
 
 
Tec. en Mecatrónica 
 
 
 . 
 No verifica la Propiedad Conmutativa: . 
 No verifica la Propiedad Asociativa: . 
 Verifica la Propiedad Cancelativa: . 
 
 
Producto: 
 Verifica la Ley de Cerradura, es decir, el producto de dos números enteros da 
como resultado otro número entero . 
 Verifica la Propiedad Conmutativa: . 
 Verifica la existencia de Elemento Neutro: . 
 Verifica la Propiedad Distributiva con respecto a la suma y a la resta. 
 
 
 
 Verifica la existencia de Elemento Absorbente, . 
División: 
Esta operación es posible en el conjunto de los números Enteros siempre que el 
dividendo sea múltiplo del divisor: . 
 
3. Números Racionales: 
El conjunto de los Números Racionales se lo simboliza con .Dados 
 
 
 
 
p se denomina numerador de la fracción y q se denomina denominador de la fracción. 
Dados los números enteros diremos que la fracción 
 
 
 
es equivalente a 
 
 
 sí y sólo sí . 
Llamaremos mínima expresión de un número ración a la fracción cuyo numerador y 
denominador no tienen divisores enteros comunes. 
 
 
 
Universidad Tecnológica Nacional 
Facultad Regional Santa Fe 
 
 
 
 
 
 
Tec. en Mecatrónica 
 
 
o 
 
 
 
 
 
 
 
 
 entonces 
 
 
 es la mínima expresión de 
 
 
 . 
Orden en :Dados dos números racionales 
 
 
 
 
 
 se define la suma, la resta, el producto y el 
cociente de ellos respectivamente por: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4. Números Irracionales: 
El conjunto de números irracionales se lo denomina . Está formado por 
todos los números cuya expresión decimal tiene infinitas cifras decimales no 
periódicas. 
Ejemplos: 
 
 
 
 
5. Números Reales: 
El conjunto de número reales se lo denomina . Está formado por la unión 
del conjunto de los números racionales con los números irracionales. Conservando 
todas los operaciones y propiedades de los mismos. 
 
6. Potenciación: 
 el producto de n veces el factor a se denomina potenciación y se lo 
simboliza de la siguiente manera: . 
 A recibe el nombre de base de la potencia. 
 N se llama exponente. 
Ejemplo: 
 
 
 
Universidad Tecnológica Nacional 
Facultad Regional Santa Fe 
 
 
 
 
 
 
Tec. en Mecatrónica 
 
 
o 
o 
Propiedades: 
 La potencia no verifica la Propiedad Conmutativa: . 
o 
 
 La potencia no es distributiva respecto a la suma o resta: 
o y 
o y 
 
 La potenciación es distributiva respecto del producto y del cociente: 
 
 
 
o 
o 
 
 El producto de potencias de igual base es igual a dicha base elevada a la suma de 
los exponentes: 
o 
 
 El cociente de ponencia de igual base es igual a dicha base elevada a la diferencia 
entre el exponente del numerador y el exponente del denominador : 
 
o 
 
 La potencia de cualquier número real, no nulo, elevado a exponente cero es igual 
a uno 
o 
 
 La potencia de un número elevado a otra potencia es igual a la base de esa 
potencia elevada al producto de los exponentes: 
o 
o 
 
 La potencia de un número elevado a un número negativo es uno sobre la base 
elevado el opuesto de la potencia negativa: 
 
 
 
o 
 
 
 
 
 
 
o 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Universidad Tecnológica Nacional 
Facultad Regional Santa Fe 
 
 
 
 
 
 
Tec. en Mecatrónica 
 
 
 
7. Radicación 
Si consideramos dos números naturales n y p se dice que el número a es la raíz n-
ésima de p sí y sólo sí la n-ésima potencia de a es p. 
 
 
 N se denomina índice. 
 P se denomina radicando 
 A se denomina raíz n-ésima de p. 
 Ejemplo: 
o 
 
 . 
o 
 
 
Recordar que la raíz de un radicando negativo con índice par no existe solución en los 
reales. 
 
 
 
Propiedades: 
 La radicación no verifica la Propiedad Conmutativa: 
 
 
 
o 
 
 
 
 La radicación no es distributiva respecto a la suma o resta: 
 
 
 
 
o 
o 
 
 La radicación es distributiva respecto del producto y del cociente:
 
 
 
 
 
 
 
 
 
o 
 
 
 
 
 
 
o 
 
 
 
 
 
 
 
 La potencia m de la raíz n del número p es igual a la raíz n de la potencia m de p: 
 
 
 
 
 
 
o 
 
 
 
 
 
 La radicación se puede escribir como potencia: 
 
 
 
 
 
 
Universidad Tecnológica Nacional 
Facultad Regional Santa Fe 
 
 
 
 
 
 
Tec. en Mecatrónica 
 
 
o 
 
 
 
 
o 
 
 
 
 
Ejercicios 2: 
1) Calcular: 





 





 







 





 

15
12
:
5
4
)3
12
7
10
3
1
)
4
5
4
2
4
1
)
6
7
:
4
7
)
30
1
3
8
15
7
5)
5
1
5
88
5
12
)
2
11
5
3
5
1
)
4
3
2
7
12
1
)
3
7
3
4
3
1
)
mhc
lgb
kfa
 





 






 







4
2
5
.
4
3
4
3
2)
3
5
.
4
7
)
5
2
6
1
5
3
2
7
)
3
2
5
5
1
3
2
6)
3
7
.
5
2
)
20
3
5
11
5
1
)
oje
nid
 

















 







9
2
3
1
:2
7
2
2
9
)
5
2
5
4
3
1
5
3
)
3
7
2
7
7
2
5
3
) rqp
 
2) ¿Verdadero o falso? Justifique su respuesta
   
   
   
 
  3632
6 533
9243
532222
33222
222222
273)
.)644)
8366436)22.2.2)
22.2)2)
32:6)2:62:6)
2)4343)
nmnmf
aaakmnmne
jd
ibababac
bacabchb
bababaga






 
3) Calcular: 
 
 
 
Universidad Tecnológica Nacional 
Facultad Regional Santa Fe 
 
 
 
 
 
 
Tec. en Mecatrónica 
 
 
   
  
  




3
4
302
5
223
3 6
120
2)
5)
2)
3)
........4.....4.......4)
e
d
c
b
a
 
4) Resolver las siguientes ecuaciones: 
  72033)6
3
9
)
124)283)
22
2
22



xxd
x
c
xbxa
 
5) La superficie de un cuadrado es de 121 
2m . ¿ Cuánto mide el lado del cuadrado? 
6) La superficie de un cuadrado aumentada en 6 
2m es de 150 
2m ¿Cuánto mide el lado del 
cuadrado? 
7) El doble de la superficie de un cuadrado aumentado en 10 
2m es igual al triple del área de ese 
cuadrado disminuido en 90
2m ¿Cuánto mide el lado del cuadrado? 
8) Calcular: 
 3 63 23
3 3 3.3.316
 
 
 
9) Calcular: 
 










































































22322
232
3
5
3
5
3
:1
3
1
2)
3
1
3
4
3
1
2
1
)
3
4
4
3
3
2
2
1
)
2
1
4
3
)
dc
ba
 
 













































243432
2
1
2
1
:
2
1
)
2
1
2
1
2
1
) fe
 
 
 
 
Universidad Tecnológica Nacional 
Facultad Regional Santa Fe 
 
 
 
 
 
 
Tec. en Mecatrónica 
 
 
10) Decidir qué afirmaciones son verdaderas o falsas. Justificando en cada caso la respuesta. En el 
caso que sean falsas justificar con un ejemplo numérico 
   
 
 
    111)
66)
)
11)
)
23
2
22
1
232 3






xxxxe
d
baentoncesbac
b
aaa
 
11) Simplificar la expresión siempre que sea posible: 
   
xycon
x
y
y
x
c
ab
b
a
b
b
a
b
a
b
ab
xbaconbxbxbxaba





































































01
2
1
2
1
)
0
1
11)
000.2)
2
1
2
2
1
2
1
2
1
2
2
2
22
1
2
3
1
33
1
12
 
 
  




















 







 





22
6 5 24
111
3
12
1
1
3
12
1
1
3
2
)
00
.
)
aa
e
ba
aa
baba
d 
12) Resuelva las siguientes ecuaciones: 
 
 
 
Universidad Tecnológica Nacional 
Facultad Regional Santa Fe 
 
 
 
 
 
 
Tec. en Mecatrónica 
 
 
Recta Real 
    
  
   031)
012)224337)
339)14)
03)03)
2
2




xxxg
xxfxxxe
xxxdxc
xbxa
 
 
8. Intervalos en el conjunto de los números Reales 
 
A cada punto de la Recta Real le corresponde un número Real y cada número Real 
corresponde a uno y sólo uno de los puntos de la Recta Real. 
 
 
 
 
 
Orden y Desigualad: 
Si a y b son números reales diremos que: 
 a es menor que b si (b-a) es positivo, y lo escribimos: . 
 a es menor o igual que b si (b-a) es positivo o nulo, y lo escribimos: 
 a esmayor que b si (b-a) es negativo, y lo escribimos: . 
 a es mayor o igual que b si (b-a) es negativo o nulo, y lo escribimos: . 
 
Propiedades de las desigualdades 
 Propiedad Transitiva: Si . 
 Propiedad Aditiva: Si . 
 Si es cualquier número real . 
 Si . 
 Si . 
Intervalos y Semirrectas: 
0 
 
 
 
Universidad Tecnológica Nacional 
Facultad Regional Santa Fe 
 
 
 
 
 
 
Tec. en Mecatrónica 
 
 
Los conjuntos numéricos más frecuentes son los intervalos de la recta real. 
 Sean 
 Intervalo Abierto: 
 Intervalo Cerrado: 
 Intervalos Semiabierto: , 
 Intervalos no acotados o semirrecta: , 
 
El conjunto de los valores de x que satisfacen la desigualdad se llama Conjunto 
Solución de la desigualdad dada. 
Ejemplo: 
o Hallar el conjunto solución de la desigualdad: 
 
 
 
 
 
 
El conjunto Solución es el intervalo . 
 
9. Valor Absoluto: 
 
 
 
 
 
El valor absoluto de un número es el mismo número si es positivo o nulo, y es opuesto 
si el número es negativo. 
El valor absoluto de un número se interpreta geométricamente como la distancia del 
número al 0 en la recta numérica. 
 
Propiedades: 
 
 
 
 
 
 
 
 
 
 (Desigualdad triangular) 
 es equivalente a: 
 
 
 
Universidad Tecnológica Nacional 
Facultad Regional Santa Fe 
 
 
 
 
 
 
Tec. en Mecatrónica 
 
 
 es equivalente a: 
 Ejemplos: 
o 
 
 
 
 
 
o 
 
 
 
 
 
 
o 
 
 
 
 
 
 
 
 
 
 
 
 
o 
 
 
 
 
 
o 
 
 
 
 
10. Logaritmo: 
Sean números reales positivos, , diremos que es el logaritmo en base 
de si y sólo si elevado a la es igual a . En símbolos: 
 
 
Ejemplos: 
o 
 
 
 
 
Universidad Tecnológica Nacional 
Facultad Regional Santa Fe 
 
 
 
 
 
 
Tec. en Mecatrónica 
 
 
o 
 
 
 
 
 
 
o 
 
o 
 
 
 
 
 
 
Ejemplos: 
o Hallar el valor de b en 
 
 
. 
 Pasamos la exponencial 
 
 
 Elevamos ambos miembros a la potencia 4/3: 
 
 
o ¿Cuál es la solución de la ecuación ? 
Pasamos a la forma exponencial: 
 
 
 
 
 
Reescribimos como potencias de igual base: 
Usamos la propiedad enunciada arriba: 
Luego x=-2. 
Propiedades: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ejemplos: 
o Resolver y verificar: 
 
 
 
 
 
 
 
 
 
 
Luego 
 
 
 
 
Universidad Tecnológica Nacional 
Facultad Regional Santa Fe 
 
 
 
 
 
 
Tec. en Mecatrónica 
 
 
o Resolver y verificar: 
 
 
 
Verificación: 
 es solución 
 no es solución porque no está definido 
el logaritmo de un número negativo. 
o Una sustancia radiactiva se desintegra de acuerdo con la ley , donde y 
es la cantidad remanente después de t años. Si tenemos la cantidad inicial A=80 
gramos 
a) ¿Qué cantidad quedará después de 1 año? 
b) ¿Cuánto tardará para desintegrarse la mitad? 
Solución: a) Como A=80 gramos, tenemos , necesitamos reemplazar t por 1. 
 gramos. 
b) Debemos averiguar en qué instante es y=40 g. 
 
 
 
 
 
 
 
 
 
 . 
 
Ejercicios 3: 
1) Escriba en cada caso el conjunto de número enteros que satisfacen la desigualdad y 
representarlas gráficamente la solución: 
   
312173)
0212)3141)
217)23)



xyxe
xyxdxyxc
xbxa
 
 
 
 
Universidad Tecnológica Nacional 
Facultad Regional Santa Fe 
 
 
 
 
 
 
Tec. en Mecatrónica 
 
 
2) Determinar para que valores de x se verifica y representar gráficamente la solución de las 
desigualdades:
 
35374)
2
4
3
1)
75
7
2
)
1024)
)1(425)
0)97(1)
223).1()
5382)








xh
x
g
x
f
xe
xd
xc
xb
xxa
 
 3) Para pensar mejor: 
a) ¿Para qué valores de a y b se cumple baba  ? 
b) ¿Para qué valores de a es cierta la siguiente desigualdad? ax  
c) ¿Cuándo es cierto que xx  ? 
d) ¿Cuándo es cierto que xx  ? 
4) Hallar el valor de x y verificar la solución. 
 
   
   
   
   
       2log32log26loglog2)
04lnln)
253log1log)
12log2log)
03log2log)
71,66log)
3
33
55
2
33






xf
xxe
xxd
xxc
xxb
xa
 
5) Se sabe que la reproducción de la levadura responde a una ley como la siguiente: 
tC 2.3 donde t es el tiempo medido en minutos, C es el crecimiento, 3 la cantidad inicial de 
levadura presente. 
a) ¿Qué cantidad de levadura hay al cavo de una hora? 
b) ¿En cuánto tiempo toma C el valor 100? 
c) ¿En cuánto tiempo C cuadruplica su cantidad inicial? 
 
 
 
 
Universidad Tecnológica Nacional 
Facultad Regional Santa Fe 
 
 
 
 
 
 
Tec. en Mecatrónica 
 
 
 
Capítulo 2: Polinomios 
Llamaremos expresión algebraica a toda combinación de letras y/o números 
vinculados entre sí por las operaciones de suma, resta multiplicación y potenciación de 
exponente racional. 
Una expresión racional entera recibe el nombre de Polinomio. 
Simbólicamente: 
 
 
 se denomina coeficiente. 
 se denomina coeficiente principal. 
 se denomina término independiente. 
Monomio: Es toda expresión algebraica entera en la que no intervienen las 
operaciones de suma ni resta. Es decir, un monomio es un polinomio de un solo término. 
Ejemplos: , , 
Polinomio Ordenado: Decimos que un polinomio está ordenado respecto de una 
letra llamada ordenatriz cuando todos sus términos están dispuestos de modo que los 
exponentes de dicha letra ordenatriz vayan aumentando ó disminuyendo sucesivamente 
desde el primer término hasta el último. La ordenación será creciente ó decreciente según 
los exponentes de la letra ordenatriz vayan de menor a mayor o viceversa. 
Ejemplo: 
o 
o 
Polinomio Completo: Un polinomio se dice que está completo cuando contiene 
términos de todos los grados según la letra ordenatriz, desde el mayor hasta el grado 0. 
Ejemplo: 
o 
o 
Polinomio Opuesto: El polinomio opuesto de uno dado es el que sólo difiere de 
aquel en el signo de los coeficientes. 
Ejemplo: Sea u u 
 . 
 
 
 
Universidad Tecnológica Nacional 
Facultad Regional Santa Fe 
 
 
 
 
 
 
Tec. en Mecatrónica 
 
 
Igualdad de Polinomios: Dos polinomios son iguales cuando tienen el mismo 
grado y los mismos coeficientes de los términos de igual grado. 
Sean los polinomios : 
 
 
 
 
 
 
 
Diremos que:. 
Ejemplo: Hallar los valores de para que con 
 y . 
Para resolver el problema igualamos los coeficientes correspondientes de los términos de 
igual grado: 
 
 
 
 
 
Polinomio nulo: Es aquel cuyos coeficientes son todos nulos. Lo simbolizamos 
con 0. 
 
Valor Numérico: Es el número real que se obtiene al reemplazar las letras (o 
variables) que intervienen en la expresión por números reales determinados y efectuar los 
operaciones indicadas, siempre que sea posible. 
Ejemplos: 
o 
o 
Operaciones fundamentales: 
 Operaciones con monomios semejantes: 
 Suma: 
 Resta: 
 Producto: 
 Cociente: 
 
 
 
 
 Operaciones con monomios semejantes: 
 Suma: 
 Resta: 
 
 
 
Universidad Tecnológica Nacional 
Facultad Regional Santa Fe 
 
 
 
 
 
 
Tec. en Mecatrónica 
 
 
 Suma Algebraica: 
 Producto: 
 Cociente: 
 
 
 
 
 
 Operaciones con Polinomios: 
 Suma: 
 Resta: 
 Producto de un polinomio por un monomio: 
 
 Producto de dos polinomios: 
 
Se aplica la propiedad distributiva del producto respecto de la suma o resta y se 
respetan las propiedades de producto de potencia de igual grado. Al multiplicar un 
polinomio de grado m por otro de grado n, se obtiene un polinomio de grado m+n. 
 Cociente de un polinomio por un monomio: 
 
 
 
 
 
 
 
 Cociente entre polinomios: Sean P(x) y Q(x) dos polinomios con Q(x)≠0, 
gr(P(x))=m, gr(Q(x))=n y m ≥n. Entonces existen dos polinomios únicos C(x) y R(x) 
tales que verifican: 
 P(x)=Q(x).C(x)+R(x) donde R(x) es el polinomio 0 o tiene grado menor al grado de 
Q(x). 
 Llamaremos a P(x) dividendo, a Q(x) divisor, a C(x) cociente y a R(x) resto. 
 Cuando R(x)=0 entonces P(x)=Q(x).C(x) y así Q(x) es un factor de P(x).En este 
caso se dice que:’’ P(x) es divisible por Q(x)’’, o que ‘’Q(x) es divisor exacto de P(x)’’. 
Ejemplo: Sean y 
 
 
 
 
 
 
 
 
 
 
Universidad Tecnológica Nacional 
Facultad Regional Santa Fe 
 
 
 
 
 
 
Tec. en Mecatrónica 
 
 
Con lo cual C(x)= y R(x)= 
Observación: Cuando P(x) no es un polinomio completo es necesario ordenarlo en forma 
decreciente y completarlo para poder realizar los cálculos. 
 Cociente de un polinomio por uno de la forma (x-a): 
Para resolver este tipo de cociente se utiliza la Regla de Ruffini. 
Sea: y . Calcular P(x):Q(x). 
Se emplea la siguiente práctica: 
o En la primera fila se escriben los coeficientes del dividendo completo y ordenado. 
 
o En la segunda fila, a la izquierda, se escribe a, es este caso 2 
 
 
 
 
 
 
 
Nota: si el polinomio divisor hubiese sido , a hubiese sido -2, pues 
x+2=x-(-2) 
o En la tercera fila se escriben los coeficientes del cociente que se van obteniendo, 
mediante la siguiente regla: 
 El primer coeficiente del cociente baja, es 4. 
 Luego se hace 4.2=8 y ese valor se escribe debajo del coeficiente 5. 
 Se suma 5 + 8 =13. El segundo coeficiente es 13. 
 Se hace 13 . 2 =26 y se escribe debajo del coeficiente -1. 
 Se suma -1 +26=25. El tercer coeficiente es 25. 
 Se hace 25.2 =50 y se escribe debajo del coeficiente 12. 
 Se suma 12+50 =62. El resto es R(x)= 62 
 
 
 
 
 
 
 
 
 El cociente es : 
 
Teorema del Resto: 
El resto de la división de un polinomio P(x) por otro de la forma (x-a), es igual a P(a). 
 
 
 
Universidad Tecnológica Nacional 
Facultad Regional Santa Fe 
 
 
 
 
 
 
Tec. en Mecatrónica 
 
 
 
o Para nuestro ejemplo anterior se pedía calcular P(x):Q(x) con 
 y . Si sólo nos interesa conocer el resto de esta división 
entonces calculamos: 
 . 
Entonces cuando queramos investigar si un polinomio P(x) es divisible por uno de 
la forma (x-a), bastará con encontrar P(a). Si P(a)=0, entonces P(x) será divisible por (x-
a). Si P(a)≠ 0, no lo será. 
 
Raíces de un polinomio: 
Decimos que un número real a es raíz o cero del polinomio P(x) sí y sólo sí se verifica 
que P(a)=0. 
 
o El número real 
 
 
 es raíz o cero de pues 
 
 
 
 
 
 
 
 
 . 
o El polinomio no admite ceros o raíces reales porque al plantear 
 vemos que no existen valores reales que satisfagan la igualdad. 
 Para encontrar los ceros o raíces de , es decir, 
 
 Las raíces de esta expresión están dadas por la forma: 
 
 
. 
o Sea . Haciendo la resolvente 
 
 
 
 
 
 
De donde 
 
 
. 
 
Lema de Gauss: Sea 
 
 un polinomio con 
coeficientes enteros. 
 Si P(x) admite al número entero a como raíz, entonces a es divisor de . 
 Si P(x) admite al número racional 
 
 
 como raíz, entonces p es divisor de y 
q es divisor de . 
 
 
 
Universidad Tecnológica Nacional 
Facultad Regional Santa Fe 
 
 
 
 
 
 
Tec. en Mecatrónica 
 
 
 
Ejemplo: Sea donde y , si R(x) admite una raíz racional 
 
 
 
 se deberá verificar que p es divisor de 4 y que q es divisor de 1. Luego: 
Los posibles son 
 
 
 las posibles raíces racionales son 
 
 
 
 
 
 
x=2 es una raíz de R(x).Es decir, (x-2) es divisor de R(x) ,haciendo Ruffini: 
 
 
 
 
 
 
 
 
 
 
Luego 
Haciendo la resolvente para obtenemos: . 
Luego 
 
Observación: es posible que un polinomio tenga varias raíces iguales, por ejemplo: 
 . En este caso se dice que a=2 es raíz de 
multiplicidad 2. 
 
Decimos que un polinomio: 
 
 con es 
mónico, si su coeficiente principal es igual a 1, o sea, si . 
 
Teorema Fundamental del Álgebra: un polinomio con coeficientes reales de grado n 
tiene n raíces (reales o complejas) contadas con su multiplicidad. 
 
Este polinomio puede escribirse en su forma factorizada de la siguiente manera: 
 donde es el coeficiente principal y las las n 
raíces. 
 
Ejemplo: ¿Cuáles son las raíces de ? 
El polinomio tiene 4 raíces: a=1 con multiplicidad 1 y a=-3 con multiplicidad 3. 
 
Factoreo de Expresiones Algebraicas Enteras: 
 
 Factor Común: Una expresión algebraica es factor común de todos los términos 
de un polinomio cuando aparece repetida en cada uno de esos términos. 
 
 
 
Universidad Tecnológica Nacional 
Facultad Regional Santa Fe 
 
 
 
 
 
 
Tec. en Mecatrónica 
 
 
La expresión 
 
 
 , el factor común es . Sacando como factor 
común, resulta: 
 
 
 . 
 Factor común por grupos: Por ejemplo: . 
No existe un factor común a todos los términos, pero agrupando los términos que admiten 
factor común, podemos escribirlo: 
 
2 ( + ). 
 Trinomio Cuadrado Perfecto: Llamamos así al trinomio tal que dos de sus 
términos son cuadrados perfectos yel otro es el doble producto de las bases de 
esos cuadrados. 
 
A través de dicha bases factorizamos el trinomio . 
 Cuatrinomio Cubo Perfecto: Llamamos así a todo cuatrinomio de la forma: 
 
El polinomio dado resulta que: . 
Diferencia de Cuadrados: Todo polinomio que es diferencia de cuadrados es igual al 
producto de la diferencia de las bases de dicho cuadrado por la suma de las mismas, es 
decir: 
 
Ejercicios 1: 
1) Dados los polinomios: P(x)= -2x+0,5x2 ; Q(x)= - 
 
 
+ 
 
 
x-2x2 ; S(x)= - 
 
 
- 
 
 
x+2x2 
Hallar las siguientes sumas e indicar el grado del polinomio resultante: a)P+Q b) Q+S c) 
P+Q+S 
2) Hallar las diferencias: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Universidad Tecnológica Nacional 
Facultad Regional Santa Fe 
 
 
 
 
 
 
Tec. en Mecatrónica 
 
 
3) Multiplicar: 
 
 
 
 
 
 
 
4) Hallar los cocientes: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5) ¿Para que valores de ‘’v’’ el polinomio x3+ vx2 + 3x es divisible por (x+5)? 
6) Hallar las raíces restantes de los siguientes polinomios y luego escribirlo en forma factorizada 
(como producto de factores lineales): siendo x=-3 una raíz. 
 siendo x=-1 raíz de multiplicidad 2. 
7) Calcular todas las raíces del polinomio P(x)= x4 + 2x3 - 3x2 - 4x + 4 . 
8) Construir un polinomio Mónico de segundo grado que tenga a x=2 como raíz y donde el término 
independiente sea 3. 
9) Dado el polinomio Q(x)= x5 – x4 – 7x3+x2+6x . Calcular todas las raíces y factorizarlo. 
10) Factorizar las siguientes expresiones, combinando los distintos casos de factoreos: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Universidad Tecnológica Nacional 
Facultad Regional Santa Fe 
 
 
 
 
 
 
Tec. en Mecatrónica 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Universidad Tecnológica Nacional 
Facultad Regional Santa Fe 
 
 
 
 
 
 
Tec. en Mecatrónica 
 
 
Respuestas: 
Capítulo 1: 
Ejercicios 1: 
1. a) 36 ; b)42 ; c)39; d)71 
2. 9 
3. 17 
4. a) 42; b) 21; c) 8 ; d) 21; e) -12; f) 44; g) 52; h) 3; i) 26; j) 15; k) 3; l) 10 
5. a) 5; b) 4; c) 3; d) 3; e) 1 
6. 5 
7. 265 y 285 
8. Sillas $10 y mesa $60. 
Ejercicios 2: 
1. a) -2/3 ; b) -77/5; c) 2; d) -37/20; e) 52/15; f) 13/3; g)-217/30; h)145/12; i)14/15; j) -
35/12; k) -33/50; l) 3/2; m) -1; n) -113/15; o) -5/8; p)17/42; q)-7/25; r) 
811/126 
2. a) F; b) V; c)V; d)V; e)F; f)V; g)V; h)F; i)F ; j)F, k)V 
3. a)1; 16; 4; b) 9;c) 260; d)1; e) 64 
4. a) 5; b) 4; c) 3; d) 3 
5. 11 
6. 12 
7. 10 
8. 31 
9. a) 15625/4096; b) 169/36; c)(61/36)3; d) 4/9; e) 5/16; f)8 
10. a) F; b)F; c)F; d)F; e)V 
11. a) 2ab1/3x1/3-x2/3 ; b)(2b2)/(a2-b2)1/2 ; c)(y+x)/(y-x); d)1/(a8/5b); e) (a2+1)/(a4+a2+1) 
12. a) -3; b) ; c) 3; d) ; e) -33/25; f) 1, 2; g) -3,0,1 
Ejercicios 3: 
1. a) (-,-1]; b)[-8,-3]; c) (-3,4); d)(-3,-2) ; e)(-2,1) 
2. a) 0; b) -1 , 7; c) ; d) -2; e) (-,-2)U(3,); f) (-7,42); g)[-4,4/3]; h) [5/3,3] 
3. a) a y b deben tener el mismo signo; b) (-,0]; c) x≥0; d) 0≥x 
4. a) 5,13x1066; b) 3; c) 3; d) -23/13 ; e) -2, 2; f) 
5. a) 3,46x1018 ; b) 5,06[s]; c)2[s] 
 
 
 
 
Universidad Tecnológica Nacional 
Facultad Regional Santa Fe 
 
 
 
 
 
 
Tec. en Mecatrónica 
 
 
 
Capítulo 2: 
Ejercicios 1: 
1. 
 
 
 
 
 
 
 
 
 
 
 
 
2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3. 
 
 
 
 
 
 
4. 
 
 
 
 
 
 
 
5. v=28/5 
6. a)x=4, x=-2, S(x)=(x-4)(x+2)(x+3); b) x=2, x=-3; T(x)= (x-2)(x+3)(x+1)(x+1) 
7. x=1 (doble) y x=-2 (doble) 
8. P(x)=x^2 -7/2 x+3 
9. Q(x)=(x-1)(x+1)(x+2)(x-3)x. Las raíces son 0; 1; -1, -2; 3 
10. a) 5b2(a-5b2x4)2; b) (a-b)(a+b)(m-n) ; c) 5x3b(2/3 xb-1)(2/3 xb+1); d) (a-1)2(a+1); 
e)1/3 a(a+b)(m-2n); f) a(a-2)(a+2)(a-x); g) 3x(2x-y)3; h) 3x(1/2 a-1)3; i) (m2+n)(a-
1)(a2+a+1)

Otros materiales