Logo Studenta

Física optica reflexion y refraccion de la luz

¡Este material tiene más páginas!

Vista previa del material en texto

FÍSICA INTERACTIVA PARA INGENIEROS 
DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN 
1 
 
OPTICA GEOMÉTRICA 
LEYES DE REFLEXION Y REFRACCION 
 
 
 
 
En el primer capítulo hemos visto como una perturbación electromagnética se propaga en el 
vacío, de acuerdo con la ecuación diferencial de la onda, con una velocidad c ≅ 3 108. m/s; 
también sabemos que velocidad de propagación de la onda, longitud de onda y frecuencia están 
relacionadas entre sí a través de la ecuación: 
 
 c == λλ νν (1) 
 
la cual permite, obviamente, infinitos valores de λλ y νν ; de hecho hay una gran variedad de 
ondas electromagnéticas cuyas características satisfacen la ecuación (1). 
 
Al conjunto de estas ondas se le llama espectro electromagnético; dado el enorme rango de 
variación de la longitud de onda el espectro electromagnético está representado en la Figura 1 en 
escala logarítmica. 
 
 
Visible
100
109
103
106
106
103
109
100
1012
10-3
1015
10-6
1018
10-9
1021
10-12
1024
10- 15
Frecuencia, Hz
Longitud de onda, m
Corriente
Alterna
Microondas Rayos gamma
Rayos X
AM FM T.V.
Radio Infrarojo Ultravioleta
 
 
Figura 1. Diagrama del espectro e.m. en escala logarítmica. 
 
Como está señalada en la Figura 1 una muy pequeña porción del espectro e.m. corresponde a la 
luz visible o sea a las ondas e.m. que pueden ser percibidas por el ojo humano; son aquellas 
FÍSICA INTERACTIVA PARA INGENIEROS 
DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN 
2 
cuyas longitudes de onda están comprendidas en el intervalo 4 000. Å ÷ 7 000. Å ( 1 Å = 1 
angström = 10 10− m) y correspondientemente sus frecuencias son del orden de 1014 Hz.. 
 
 
Ultravioleta Violeta Azul Verde Amar. Naranja Rojo Infrarojo
4000 5.000 6000 7000
Longitud de onda EN Aλ
 
 
Figura 2. Longitudes de onda de la porción del espectro e.m. 
 correspondiente a la luz visible. 
 
La Figura 2 muestra un diagrama de la luz visible y de los colores percibidos por el ojo humano 
asociados a las diferentes longitudes de onda. 
 
En este capítulo y en el próximo nos ocuparemos de los fenómenos conexos a la porción del 
espectro e.m. correspondiente a la luz visible es decir desarrollaremos esa parte de la física 
normalmente llamada óptica. 
 
Si bien la luz sea una onda e.m. y por lo tanto sea capaz de rodear los obstáculos( 1 ) , en nuestras 
observaciones cotidianas podemos ver que, en la mayoría de los casos, la luz se propaga en forma 
rectilínea; para tal fin basta observar las sombras bien definidas proyectadas por los objetos o la 
trayectoria de la luz que entra en una habitación oscura a través de un hueco en los póstigos de la 
ventana. La óptica geométrica analiza precisamente los fenómenos luminosos y los sistemas 
ópticos para los cuales pueda considerarse válido el principio de propagación rectilínea de la 
luz. 
 
Para estos fenómenos y estos sistemas ópticos reemplazaremos entonces las ondas luminosas con 
los rayos entendiendo como rayos a las direcciones de propagación de los frentes de onda. 
 
 
( 1 ) La capacidad de la luz para rodear los obstáculos fue observada por primera vez por 
Grimaldi, cuyos estudios fueron publicados en 1665, sin embargo la experiencia común 
es que, normalmente, la luz se propaga en forma rectilínea; los fenómenos en los cuales 
la desviación de la luz (difracción) se hace evidente, deben tratarse mediante un 
formalismo ondulatorio y señalan el límite entre la óptica geométrica y la óptica física. 
FÍSICA INTERACTIVA PARA INGENIEROS 
DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN 
3 
La Figura 3 muestra los frentes de onda y los correspondientes rayos para los casos de ondas 
luminosas que se propagan por ondas esféricas a partir de una fuente puntual o por ondas planas a 
partir de una fuente puntual localizada en el infinito. 
 
 
 
S
λ
 
Figura 3. Frentes de ondas y rayos luminosos para dos diferentes situaciones . 
 
 
1 PRINCIPIO DE FERMAT 
 
Como hemos dicho en repetidas ocasiones, la velocidad de propagación de las ondas 
electromagnéticas y por lo tanto de la luz es c = 3 108. m/s en el vacío; observaciones 
experimentales realizadas a partir de los inicios del siglo XIX (Fizean, Foucault, etc...) y medidas 
posteriores han demostrado que en diferentes medios de propagación (agua, vidrio, plástico.....) la 
luz tiene diferentes velocidades menores que c ; podemos entonces definir un número n que 
llamaremos índice de refracción del medio de propagación de manera que si v es la velocidad 
de propagación de la luz en el medio, sea: 
 
 n cv = ó n c= / v (2) 
 
Así si tenemos diferentes medios en los cuales la luz se propaga con velocidades v v v1 2, .... i 
podremos asociar a esos medios diferentes índices de refracción de modo que: 
 
 n n n n ci i1 1 2 2 3 3v v v v= = = = =.... (3) 
 
FÍSICA INTERACTIVA PARA INGENIEROS 
DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN 
4 
Consideremos ahora un haz de luz que se propaga en un medio de índice de refracción n con 
velocidad n
c=v ; después de un tiempo t habrá recorrido una distancia AB S= dada por: 
 
 AB S t= = v. (4) 
 
En el mismo tiempo t un haz de luz, en el vacío, recorrería una distancia A B S S0 0 0= > dada 
por: 
 
 A B S c t0 0 0= = . (5) 
 
Teniendo en cuenta la relación (2): 
 
 A B S n t n AB n S0 0 0= = = =. . .v (6) 
 
A la distancia n S. = ∆∆ la denominamos camino óptico. 
 
El concepto de camino óptico es obviamente útil para comparar trayectorias luminosas recorridas 
en distintos medios que, de otra manera, no serían comparables dado que en cada medio la luz se 
propaga con diferente velocidad; en cambio los diferentes tramos de trayectoria pueden 
compararse a través de los caminos ópticos asociados, dado que éstos corresponden a trayectorias 
todas recorridas en el vacío. 
 
Así por ejemplo, si un haz de luz recorre tramos de trayectoria de longitudes S S S S i1 2 3, , .... 
en medios de índices de refracción n n n ni1 2 3, , .... respectivamente (Figura 4). 
 
S 1 S 2 S 3 S 4 S 5 S i
n in 5n 4 n 3n 2n 1
 
 
 Figura 4. Trayectoria de un haz de luz de tramos S S Si1 2, ,.... recorridos 
 en medios de índices de refracción n n ni1 2, ,.... . 
 
FÍSICA INTERACTIVA PARA INGENIEROS 
DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN 
5 
La longitud total de la trayectoria será: 
 
 L S S S S Si ii= + + + + = ∑1 2 3 .... (7) 
 
pero el camino óptico total estará dado por: 
 
 ∆∆ = + + + + = ∑n S n S n S n S n Si i i ii1 1 2 2 3 3 .... (8) 
 
El camino óptico ∆∆ corresponde a la longitud de la trayectoria que la luz recorre, en el vacÍo, en 
el mismo tiempo que emplea para recorrer la trayectoria de longitud L en los medios de índices 
de refracción n n ni1 2, ,.... . 
 
Volvamos ahora a considerar un haz de luz (ver Figura 3.4) que se propaga desde A hasta B 
atravesando varios medios de diferentes índices de refracción; es evidente que es posible 
imaginar muchas o más bien infinitas trayectorias que unen los puntos A y B ; el principio de 
Fermat nos permite establecer cuál de todas las trayectorias imaginableses la que efectivamente 
recorre el haz de luz. 
 
El principio de Fermat afirma que: 
 
La trayectoria real de un haz de luz es la que se asocia al camino óptico máximo, mínimo o 
estacionario. 
 
Con relación al caso ilustrado en la Figura 4 este principio nos dice que de todas las trayectorias 
que pueden trazarse entre los puntos A y B la que realmente recorre la perturbación luminosa 
es la que cumple con la relación: 
 
 D D n Si ii∆∆ = =∑ 0 (9) 
 
 
2 LEYES DE REFLEXION Y REFRACCION 
 
Las leyes de reflexión y refracción de la luz tienen indudables fundamentos experimentales, sin 
embargo es posible obtenerlas por vía analítica utilizando el principio de Fermat. 
 
FÍSICA INTERACTIVA PARA INGENIEROS 
DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN 
6 
Consideremos, por ejemplo, un haz de luz que se propaga desde el punto A hacia el punto B 
reflejándose sobre un espejo plano. 
 
l
XM N
B
1
1
2
2
1
2
A
h
h
P
θ
θ θ
θ
 
 
 Figura 5. APB es una de las posibles trayectorias para un haz 
 de luz que se propaga desde A hacia B reflejándose 
 sobre el espejo. 
 
Evidentemente podemos imaginar infinitas trayectorias para el haz de luz y es claro que éstas 
dependen del punto del espejo en el cual pensemos vaya a reflejarse el haz; de manera que si 
determinamos la posición del punto P habremos determinado la trayectoria real. Con relación 
a la Figura 5, si trazamos las perpendiculares al espejo desde los puntos A B, e indicamos con 
M N, los pies de esas perpendiculares, podemos identificar la posición del punto P a través de 
su distancia x con respecto al punto M . 
 
Si ponemos AM h= 1 , BN h= 2 , MN = l entonces MP x= y PN x= −l de manera que 
la longitud de la trayectoria del haz de luz será: 
 
 ( )L AP PB h x h x= + = + + + −12 2 22 2l 
 
mientras el camino óptico asociado a la trayectoria será: 
 
 ( )∆∆ = = + + + −n L n h x n h x. 12 2 22 2l 
 
siendo n el índice de refracción del medio en el cual este sumergido el espejo. 
 
FÍSICA INTERACTIVA PARA INGENIEROS 
DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN 
7 
Dado que la trayectoria de la luz depende de la posición del punto P o sea del valor de x , 
podemos encontrar la trayectoria real aplicando el principio de Fermat, es decir imponiendo la 
condición: 
 
 
( )
( )
d
dx
nx
h x
n x
h x
∆∆ = −
+
+
−
+ −
=2
2
2
2
0
1
2 2
2
2 2
l
l
 
 
de donde obtenemos: 
 
 
( )
x
h x
x
h x1
2 2
2
2 2+
= −
+ −
l
l
 
 
relación que es equivalente a la siguiente: 
 
 
MP
AP
PN
PB
= y entonces: sen senθθ θθ1 2= 
 
relación ésta que solamente puede cumplirse cuando θθ θθ1 2= o sea cuando los ángulos de 
incidencia y de reflexión son iguales. 
 
Lo anterior implica entonces que la trayectoria real del haz de luz es la que se asocia a la 
condición 
d
dx
∆∆ = 0 (principio de Fermat) y que esta condición se satisface cuando θθ θθ1 2= 
(ley de reflexión). 
 
De la misma forma podemos obtener la ley de SNELL para la refracción. 
 
Consideremos, por ejemplo, el caso de un haz de luz que se propaga desde el punto A situado en 
un medio de índice de refracción n1 hacia un punto B situado en un medio de índice de 
refracción n2 ; en este caso también podemos imaginar infinitas trayectorias las cuales difieren 
por la posición del punto P sobre la interfase en la cual incide la luz (Figura 6). 
 
 
FÍSICA INTERACTIVA PARA INGENIEROS 
DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN 
8 
l
X
M N
B
A
h
h
P
n2
n1
1
1
2
2
1
2
θ
θ
θ θ
 
 
 Figura 6. APB es una de las posibles trayectorias para un haz 
 de luz que se propaga desde A hacia B atravesando 
 la interfase entre dos diferentes medios de propagación. 
 
La longitud de la trayectoria calculada con base en la Figura .6 será: 
 
 
 ( )L AP PB x h x h= + = + + − +2 12 2 22l 
 
y correspondientemente el camino óptico: 
 
 
 ( )∆∆ = + + − +n x h n x h1 2 12 2 2 22l 
 
Para determinar la trayectoria real introduzcamos la condición impuesta por el principio de 
Fermat: 
 
FÍSICA INTERACTIVA PARA INGENIEROS 
DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN 
9 
 
( )
( )
d
dx
n x
x h
n x
x h
∆∆ = −
+
+
−
− +
=2
2
2
2
01
2
1
2
2
2
2
2
l
l
 
de donde obtenemos: 
 
 
( )
n
x
x h
n
x
x h
1 2
1
2 2 2
2
2+
= −
− +
l
l
 
 
 
o sea : n n1 1 2 2sen senθθ θθ= (Ley se Snell) (10) 
 
 
Otra consecuencia importante del principio de Fermat es el principio de reversibilidad; con 
relación a la Figura 7, dicho principio establece que si T es la trayectoria que, de acuerdo con el 
principio de Fermat, recorre un haz de luz que se propaga desde A hacia B , esa misma 
trayectoria T es la que recorre la luz que se propaga desde B hacia A . 
 
 
SSSSS
n n n n n
543
21
1 2 3 4 5
 
 
 Figura 7. La trayectoria real de un haz de luz es independiente 
 del sentido de propagación. 
 
 
3 Reflexión total 
 
Consideremos dos medios de índices de refracción n n1 2, (con n n2 1> ), y supongamos que 
una fuente de luz esté localizada en el medio de mayor índice de refracción; nos proponemos 
analizar qué ocurre cuando la luz incide sobre la interfase entre los dos medios. De acuerdo con 
la ley de Snell, n n1 1 2 2sen senθθ θθ= y dada la condición n n2 1> , el ángulo de refracción 
θθ1 resulta siempre mayor que el ángulo de incidencia θθ2 ; esto implica que existe un valor 
FÍSICA INTERACTIVA PARA INGENIEROS 
DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN 
10 
θθ2 lim para el ángulo de incidencia para el cual resulta θθ ππ1 2= o sea para el cual el rayo 
refractado es paralelo a la interfase. 
 
 
 
No hay rayo refractado
Reflexión
Interna
total
Rayos refractados
El rayo refractado roza la superficie
n2
n1
1
2
2 lim
2
θ
θ θ
θ
 
 
 Figura 8. Reflexión total. Los rayos que inciden sobre la interfase 
 con ángulos mayores que θθ2 lim se reflejan en el medio 
 de índice de refracción n n2 1> . 
 
Es fácil ver que para ángulos de incidencia mayores de θθ2 lim , la ley de Snell daría para el 
senθθ1 valores mayores de 1 , lo cual naturalmente es imposible. 
 
¿Qué ocurre entonces con los rayos que inciden bajo ángulos lim22 θθ > ? 
 
Experimentalmente se observa que estos rayos se reflejan completamente en el medio de índice 
de refracción n2 , o sea que la interfase (para esos rayos) se convierte en un espejo perfecto, en 
el sentido que la luz no puede transmitirse al medio de índice de refracción n1 . 
 
FÍSICA INTERACTIVA PARA INGENIEROS 
DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN 
11 
Es obvio que el valor del ángulo límite para la reflexión interna total (así se llama este 
fenómeno!) puede calcularse fácilmente con la condición que si θθ θθ2 2= lim entonces 
θθ ππ1 2= ; esta condición reemplazada en la ley de Snell para la interfase considerada nos da: 
 
 θθ2
1 1
2
lim
n
n
=





−sen (11) 
 
Por ejemplo si la fuente luminosa está localizada en el vidrio ( )n2 1 5= . , solamente saldrán al 
aire ( )n1 1≅ aquellos rayos que inciden sobre la superficie de separación con ángulos inferiores 
a: 
 
 θθ2
1 1
1 5
41 81lim =




= °−sen
.
. 
 
Los rayos que inciden con ángulos superiores a 4181. ° se reflejarán en el vidrio. 
 
 
4. PRISMAS 
 
El prisma es un sistema óptico formado por dos superficies planas que se cortan formando un 
ángulo αα y que separanmedios de diferentes índices de refracción. 
 
n1 n2 n3
α
 
 Figura 9. Esquema de un prisma. 
 
El prisma es, después de los lentes, el sistema de más amplia utilización en los aparatos ópticos 
dado que puede funcionar como dispersor o reflector. 
FÍSICA INTERACTIVA PARA INGENIEROS 
DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN 
12 
 
 
4.1 Dispersión de la luz. 
 
En la sección 1 observamos que la velocidad de la luz en los diversos medios de propagación 
tiene diferentes valores siempre inferiores a c ≅ 3 108. m/s, que es la velocidad de la luz en el 
vacío. Teniendo en cuenta este hecho experimental definimos el índice de refracción n asociado 
a cada medio de propagación de manera que: 
 
 n
c=
v
 (12) 
 
Siendo v la velocidad de la luz en el medio de propagación considerado. Sin embargo si se 
analiza con más precisión la propagación de la luz en los diferentes medios se llega a la 
conclusión que mientras la velocidad de la luz en el vacío es la misma para todas las frecuencias 
que componen el espectro de la luz visible, la velocidad en una sustancia material es distinta para 
las diferentes frecuencias. 
 
De acuerdo con la relación (12), lo anterior implica que el índice de refracción de una sustancia 
depende de la frecuencia de la radiación incidente. 
 
 ( )n n= νν (13) 
 
siendo menor para las frecuencias más bajas y mayor para las frecuencias más altas. 
 
Si enviamos entonces un haz de luz blanca (que contiene todas las frecuencias del espectro de la 
luz visible) sobre un prisma, de conformidad con la ley de Snell, las diferentes frecuencias 
componentes sufrirán diferentes desviaciones, siendo la luz violeta la más desviada y la luz roja la 
menos desviada, de manera que, a la salida del mismo, la luz se abre en forma de abanico de 
colores o, como se dice, forma un espectro de dispersión en el cual es posible identificar las 
diferentes frecuencias (es decir los diferentes colores) presentes en el haz incidente. 
 
FÍSICA INTERACTIVA PARA INGENIEROS 
DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN 
13 
α
n1 n2 n1
n1 < n2
 
Figura 10. Dispersión de un prisma. 
 
 
4.2 Desviación producida por un prisma. 
 
Consideremos un rayo de luz que incide bajo un ángulo ϕϕ1 sobre la cara de un prisma; sea n el 
índice de refracción del prisma, αα su ángulo en el vértice y supongamos que el prisma esté 
sumergido en el aire. 
 
Se define como desviación del prisma al ángulo entre la dirección del rayo incidente y la 
dirección del rayo emergente por la segunda cara. 
 
Las observaciones experimentales muestran que variando el ángulo de incidencia ϕϕ1 varía la 
desviación producida por el prisma y que hay un valor de ϕϕ1 para el cual ocurre la mínima 
desviación entre los rayos incidente y emergente; con relación a la Figura 11, en la cual el prisma 
tiene forma de triángulo isósceles, la desviación mínima ocurre cuando el rayo al interior del 
prisma es paralelo a la base o sea cuando ϕϕ ϕϕ1 4= y ϕϕ ϕϕ2 3= . 
 
Cuando se logra esta situación se dice que el prisma está en condiciones de desviación mínima. 
 
Esta situación es muy ventajosa porque puede utilizarse el sistema para determinar, con gran 
precisión, el índice de refracción de cualquier material con el cual se construya o se rellene el 
prisma; veamos como esto sea posible. 
 
FÍSICA INTERACTIVA PARA INGENIEROS 
DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN 
14 
n
A
S
P
Q
4
1
2
3
CB
R
α
ϕ ϕ ϕ
ϕδ
 
 Nota: Las líneas naranja son prolongaciones de los rayos incidente y emergente. 
Las líneas azules son las rectas normales a las superficies de entrada y salida. 
 
Figura 11. Desviación producida por un prisma. 
 
 
Analizando la Figura 11 es fácil ver que SPQ$ = −ϕϕ ϕϕ1 2 y SQP$ = −ϕϕ ϕϕ4 3 , de manera que el 
ángulo de desviación δδ , adyacente externo al triángulo SPQ , resulta ser: 
 
 δδ ϕϕ ϕϕ ϕϕ ϕϕ= + − −1 4 2 3 (14) 
 
Por otra parte la suma de los ángulos internos del cuadrilátero APRQ debe ser igual a 2ππ , es 
decir: 
 
 ( )PAQ AQR QRP RPA$ $ $ $+ + + = + + − − + =αα ππ ππ ϕϕ ϕϕ ππ ππ
2 2
22 3 
 
de donde: 
 
 αα ϕϕ ϕϕ= +2 3 (15) 
 
y reemplazando en la (14): 
 
FÍSICA INTERACTIVA PARA INGENIEROS 
DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN 
15 
 δδ ϕϕ ϕϕ αα= + −1 4 (16) 
 
Dado que queremos encontrar el valor de ϕϕ1 para el cual δδ δδ= min podemos diferenciar la 
ecuación (16) de manera que: 
 
 d d dδδ ϕϕ ϕϕ= + =1 4 0 de donde d dϕϕ ϕϕ1 4= − (17) 
 
Por otra parte diferenciando la (15) y teniendo en cuenta que αα es fijo: 
 
 d dϕϕ ϕϕ2 3 0+ = de donde d dϕϕ ϕϕ2 3= − (18) 
 
La ley de Snell aplicada en el punto P se escribe (si el prisma está sumergido en aire): 
 
 sen senϕϕ ϕϕ1 2= n 
 
que diferenciada nos dará: 
 
 cos . .cos .ϕϕ ϕϕ ϕϕ ϕϕ1 1 2 2d n d= (19) 
 
La misma ley de Snell aplicada en Q : 
 
 n.sen senϕϕ ϕϕ2 4= 
y diferenciando: 
 
 n d dcos . cos .ϕϕ ϕϕ ϕϕ ϕϕ3 3 4 4= (20) 
 
Dividiendo la (19) por la (20) y teniendo en cuenta las relaciones (17), (18): 
 
 
cos
cos
cos
cos
ϕϕ
ϕϕ
ϕϕ
ϕϕ
1
4
2
3
= 
 
o sea: 
 
 
1
1
1
1
2
1
2
4
2
2
2
3
−
−
=
−
−
sen
sen
sen
sen
ϕϕ
ϕϕ
ϕϕ
ϕϕ
 (21) 
 
FÍSICA INTERACTIVA PARA INGENIEROS 
DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN 
16 
De acuerdo con la ley de Snell sen
sen2
2
2
1
2ϕϕ
ϕϕ
=
n
 y sen
sen2
3
2
4
2ϕϕ
ϕϕ
=
n
, por lo tanto 
la ecuación (21) puede reescribirse así: 
 
 
 
1
1
2
1
2
4
2 2
1
2 2
4
−
−
=
−
−
sen
sen
sen
sen
ϕϕ
ϕϕ
ϕϕ
ϕϕ
n
n
 (22) 
 
 
El valor de ϕϕ1 que satisface esta última ecuación es evidentemente el que conduce a la 
situación δδ δδ= min deseada; para n ≠ 1 la ecuación (22) solamente puede satisfacerse si 
ϕϕ ϕϕ1 4= y por consiguiente ϕϕ ϕϕ2 3= , de manera que el prisma se encuentra en condiciones 
de desviación mínima cuando el ángulo de incidencia ϕϕ1 en la primera cara es igual al ángulo de 
refracción en la segunda cara, o sea cuando el rayo al interior del prisma es paralelo a la base. 
 
Esta situación está ilustrada en la Figura 12. 
 
 
n
A
P Q
41
2 3
CB
= Min
α
ϕ ϕ ϕ
ϕ
δ δ
 
 Nota: Las líneas naranja son prolongaciones de los rayos incidente y emergente. 
Las líneas azules son las rectas normales a las superficies de entrada y salida. 
 
 Figura 12. Prisma en condiciones de desviación mínima. Esto ocurre 
 cuando ϕϕ ϕϕ1 4= y ϕϕ ϕϕ2 3= lo que implica 
FÍSICA INTERACTIVA PARA INGENIEROS 
DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN 
17 
 PQ // BC dado que APQ AQP$ $= = − = −ππ ϕϕ ππ ϕϕ
2 22 3
. 
 
Cuando el prisma está en condiciones de desviación mínima las ecuaciones (15), (16) se 
simplifican así: 
 
 αα ϕϕ= 2 2 y δδ δδ ϕϕ αα= = −min 2 1 
 
de donde obtenemos: 
 
 ϕϕ αα2 2= (23) 
 
 ϕϕ δδ αα1 2
= +min (24) 
 
Recordando la aplicación de la ley de Snell sobre la primera cara del prisma:n = sen
sen
ϕϕ
ϕϕ
1
2
 
 
Se obtiene: 
 
 n
min
=
+


sen
sen
δδ αα
αα
2
2
 (25) 
 
ecuación que permite el cálculo del índice de refracción de la sustancia de la que está hecho el 
prisma a través de la medición precisa del ángulo al vértice y del ángulo de desviación mínima. 
 
4.3 Prismas de reflexión total 
 
El fenómeno de reflexión interna total tiene interesantes aplicaciones para los prismas que se 
utilizan para reflejar la luz en muchos aparatos ópticos (binoculares, cámaras fotográficas, etc....). 
Esta utilización de los prismas reflectores (ilustrada en dos casos simples en la Figura 13) es 
ventajosa con respecto a la utilización de los espejos porque un prisma utilizado en condiciones 
de reflexión total refleja el 100% de la luz incidente, lo que no puede lograrse con ninguna 
FÍSICA INTERACTIVA PARA INGENIEROS 
DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN 
18 
superficie metálica; además las propiedades reflectantes son permanentes mientras la reflexión de 
los espejos se altera con el tiempo por deslustrado de la superficie reflectora. 
 
 
a)
90°
45°
45°
(b)
45°
45°
90°
 
 
 Figura 13. Prismas reflectores. a) Prisma de reflexión total 
 b) Prisma de Porro. 
 
La Figura 13 muestra dos casos típicos de prismas reflectores en los cuales la luz ingresa al 
prisma sin sufrir desviación debido a la incidencia normal y luego se refleja totalmente una o dos 
veces porque incide sobre la interfase con un ángulo de 45° mayor del ángulo límite para la 
reflexión total cuyo valor es 4181. ° si el prisma estuviera hecho de vidrio.

Continuar navegando