Logo Studenta

Residuos 4

¡Estudia con miles de materiales!

Vista previa del material en texto

Economia Circular y Upcycling
 
 
Diego Fernando Rodriguez Saldaña
José Carlo Gutiérrez Rico
Keiner David Carbono Perez
Tecnología en gestión de obras civiles y construcciones
Gestión integral de residuos sólidos: 103010A_1391 
Angela Yolina Camargo
14 de mayo del 2023
Parte individual del trabajo (Diego Fernando Rodriguez Saldaña
¿Cuál es la propuesta del texto?
El texto trata sobre los desafíos y oportunidades del reciclaje y reutilización de materiales en la industria de la construcción para reducir los residuos y mejorar la sostenibilidad. Se discuten los principios de las 3R (reducir, reutilizar y reciclar) y la jerarquía de gestión de residuos sólidos como herramientas para una gestión efectiva de los residuos. También se destaca la importancia de la evaluación del ciclo de vida en la evaluación del impacto ambiental de los proyectos y materiales de construcción. El texto proporciona un estudio de caso del Parque Olímpico de Londres 2012, que recicló el 90% de todos los residuos de demolición de construcción y utilizó materiales recuperados en la construcción del parque. Se recomienda que la industria de gestión de residuos adopte un enfoque de economía circular para reducir los residuos y aumentar la productividad de los recursos. El texto también discute las estrategias de gestión de residuos, incluyendo el vertido en vertederos, las plantas de clasificación y la incineración.
¿Es difícil su aplicación en Colombia?
La aplicación de la Economía Circular y el Upcycling en Colombia puede presentar desafíos, pero también ofrece oportunidades significativas.
En primer lugar, es importante tener en cuenta que la adopción de prácticas de Economía Circular y Upcycling implica un cambio en los modelos de producción y consumo existentes. Esto requiere un cambio de mentalidad tanto por parte de las empresas como de los consumidores, lo cual puede llevar tiempo y esfuerzo. Además, puede haber barreras económicas y tecnológicas que dificulten la implementación de estas prácticas, especialmente para las empresas más pequeñas. Sin embargo, Colombia cuenta con varias ventajas que pueden facilitar la aplicación de la Economía Circular y el Upcycling. El país posee una amplia diversidad de recursos naturales y una rica biodiversidad, lo que brinda oportunidades para el desarrollo de soluciones sostenibles basadas en el uso eficiente de estos recursos. Además, existen iniciativas gubernamentales y organizaciones no gubernamentales que promueven la sostenibilidad y la economía circular en el país, lo cual puede brindar apoyo y recursos adicionales. Además, en los últimos años se ha observado un creciente interés en la sostenibilidad y el desarrollo sostenible en Colombia. Cada vez más empresas y consumidores están reconociendo la importancia de reducir el impacto ambiental y están dispuestos a adoptar prácticas más sostenibles. Esto crea un ambiente propicio para la aplicación de la Economía Circular y el Upcycling. Es importante destacar que, aunque pueda haber desafíos, la aplicación de la Economía Circular y el Upcycling en Colombia también presenta oportunidades económicas. Estas prácticas pueden generar empleo y promover la innovación, así como reducir los costos asociados con la gestión de residuos y el consumo de recursos.
Proponga como aplicarlo en su vida diaria y en su vida laboral
Aplicar la Economía Circular y el Upcycling en la vida cotidiana y en la vida laboral puede marcar una diferencia significativa en la reducción del impacto ambiental y la promoción de un estilo de vida más sostenible. Aquí tienes algunas ideas sobre cómo implementar estas prácticas en ambos ámbitos:
En la vida cotidiana:
· Reducción y reutilización: Prioriza la reducción de residuos y la reutilización de objetos en lugar de desecharlos. Dona ropa y artículos usados en buen estado, reutiliza envases y recipientes, y evita comprar productos de un solo uso. Busca opciones de intercambio, como intercambios de ropa, libros o juguetes con amigos y vecinos.
· Reciclaje adecuado: Separa y recicla tus residuos correctamente. Infórmate sobre los sistemas de reciclaje en tu localidad y asegúrate de clasificar los materiales según las indicaciones. Promueve la educación sobre el reciclaje en tu comunidad y fomenta la participación activa.
· Compra consciente: Opta por productos duraderos, de calidad y fabricados de manera sostenible. Prioriza productos hechos con materiales reciclados o reciclables y evita el consumo excesivo. Considera la posibilidad de comprar productos de segunda mano y apoya a empresas y marcas comprometidas con la Economía Circular.
En la vida laboral:
· Gestión de residuos: Implementa un programa de gestión de residuos en tu lugar de trabajo que promueva la reducción, reutilización y reciclaje. Establece estaciones de reciclaje para diferentes tipos de materiales y fomenta la conciencia entre los empleados sobre la importancia de la separación adecuada de residuos.
· Diseño sostenible de productos: Si trabajas en una empresa que produce bienes, busca formas de optimizar los diseños para hacerlos más duraderos, reparables y reciclables. Considera la posibilidad de utilizar materiales reciclados en la fabricación de productos y explora alternativas más sostenibles.
· Colaboración y reutilización de recursos: Fomenta la colaboración y el intercambio de recursos entre departamentos o empresas. Compartir recursos como equipos, herramientas o materiales puede reducir costos y el impacto ambiental al evitar la duplicación innecesaria de recursos.
Parte Colaborativa de todo el grupo
Ruta de economía 
· Inspección y evaluación del pavimento: Antes de iniciar cualquier trabajo de reparación, es importante realizar una inspección detallada del pavimento existente para determinar la magnitud de los daños y evaluar qué materiales pueden ser reutilizados.
· Reparación y reutilización: Si los daños en el pavimento no son extensos, se pueden realizar reparaciones puntuales utilizando los materiales ya existentes. Esto implica identificar las áreas afectadas y extraer las piezas de pavimento dañadas para reemplazarlas por otras en buen estado que hayan sido retiradas de otras secciones de la carretera o almacenadas previamente.
· Reciclaje de materiales: En el caso de las piezas de pavimento dañadas que no puedan ser reutilizadas, se pueden triturar y utilizar como agregado en la producción de nuevos pavimentos o como material de relleno en otros proyectos de construcción. Es importante contar con un sistema de gestión de residuos adecuado para asegurar la separación y el procesamiento correcto de los materiales.
· Mejora del diseño y la durabilidad: Al realizar la reparación del pavimento, se debe considerar la implementación de mejoras en el diseño para aumentar su durabilidad. Esto implica utilizar materiales más resistentes y técnicas de construcción adecuadas que prolonguen la vida útil del pavimento, reduciendo así la necesidad de reparaciones frecuentes.
· Uso de energías renovables y eficiencia energética: Durante la ejecución de la obra, se puede considerar el uso de fuentes de energía renovable, como la energía solar o eólica, para alimentar las maquinarias y equipos necesarios. Además, se deben implementar medidas de eficiencia energética, como la optimización de rutas y la reducción del tiempo de trabajo, para minimizar el consumo de energía.
· Sensibilización y capacitación: Es importante concienciar a los trabajadores y contratistas sobre los principios de la economía circular y capacitarlos en técnicas de construcción sostenible. Esto ayudará a garantizar que se sigan las prácticas adecuadas durante la ejecución de la obra y se maximice el aprovechamiento de los recursos.
· Monitoreo y evaluación: Una vez finalizada la obra, se debe llevar a cabo un seguimiento y evaluación del desempeño del pavimento reparado, para verificar su calidad y durabilidad. Esto proporcionará información valiosa para futuras obras de mantenimiento y reparación, permitiendo ajustar y mejorar las prácticas implementadas.Aplicación de los princios sobre el upcycling
El upcycling es un enfoque que busca aprovechar materiales o productos existentes para crear nuevos objetos de mayor valor o utilidad, evitando así desecharlos o enviarlos a los vertederos. La aplicación de los principios de upcycling tiene varios beneficios y usos. Aquí tienes algunos ejemplos:
· Reducción de residuos: El upcycling ayuda a reducir la cantidad de residuos que se generan, ya que se aprovechan materiales que de otra manera terminarían en la basura. Al reutilizar y transformar estos materiales, se evita el agotamiento de los recursos naturales y se disminuye la cantidad de desechos que se envían a los vertederos.
· Creatividad y diseño único: El upcycling fomenta la creatividad al desafiar a las personas a encontrar nuevas formas de utilizar objetos y materiales existentes. Esto puede dar lugar a diseños únicos y originales, ya que se aprovechan elementos inesperados para crear algo nuevo y diferente.
· Ahorro de recursos: Al utilizar materiales ya existentes, el upcycling ayuda a ahorrar recursos naturales, como la madera, el metal o el plástico, que se requerirían para fabricar nuevos productos. También se reduce la energía necesaria para extraer, procesar y fabricar nuevos materiales.
· Reducción de la huella de carbono: Al reutilizar y transformar materiales existentes, el upcycling contribuye a reducir la huella de carbono asociada con la producción y fabricación de nuevos productos. Al evitar la fabricación de nuevos materiales, se reduce la emisión de gases de efecto invernadero y se disminuye el impacto ambiental.
· Impulso a la economía circular: El upcycling es un componente clave de la economía circular, que busca minimizar el desperdicio y maximizar la utilización de recursos a lo largo de todo el ciclo de vida de un producto. Al aplicar los principios de upcycling, se fomenta la reutilización y se crea un sistema más sostenible y eficiente.
· Educación y conciencia: El upcycling también tiene un papel importante en la educación y la conciencia ambiental. Al promover la transformación de materiales existentes, se incentiva a las personas a repensar su relación con los objetos y a considerar alternativas más sostenibles. Además, el upcycling puede ser una herramienta educativa para enseñar sobre la importancia del reciclaje y la reutilización de recursos.
Conclusión
El upcycling es una práctica innovadora y creativa que busca transformar materiales y productos existentes en objetos de mayor valor y utilidad. A medida que enfrentamos desafíos ambientales y la necesidad de un consumo más sostenible, el upcycling emerge como una solución prometedora para reducir residuos, ahorrar recursos y fomentar la conciencia ambiental. Una de las principales ventajas del upcycling es su capacidad para reducir la cantidad de desechos que generamos. En lugar de desechar objetos y materiales en los vertederos, el upcycling nos anima a reutilizarlos y darles una nueva vida. Esto contribuye a minimizar el impacto ambiental al reducir la extracción de recursos naturales y la energía necesaria para producir nuevos materiales. Al mismo tiempo, se evita la acumulación de residuos en los vertederos, lo que resulta en una menor contaminación del suelo, el agua y el aire. Además, el upcycling fomenta la creatividad y el diseño único. Al desafiar nuestra imaginación y habilidades, nos invita a pensar de manera innovadora sobre cómo transformar los materiales existentes en algo nuevo y diferente. Este enfoque nos permite crear objetos personalizados y originales que reflejen nuestro estilo y personalidad. Además, el upcycling puede ser una fuente de inspiración para artistas, diseñadores y artesanos, que encuentran en la reutilización de materiales una forma de expresar su talento y crear piezas únicas. El upcycling también juega un papel importante en la transición hacia una economía circular. En lugar de seguir un modelo lineal de producción y consumo, la economía circular busca cerrar el ciclo de vida de los productos, maximizando su uso y minimizando la generación de residuos. El upcycling encaja perfectamente en este enfoque al extender la vida útil de los materiales y productos existentes. Al promover la reutilización y la transformación creativa, el upcycling impulsa una forma más sostenible de producción y consumo, donde los objetos no se convierten rápidamente en desechos, sino que se mantienen en circulación el mayor tiempo posible. Además de los beneficios ambientales y económicos, el upcycling también tiene un impacto en la educación y la conciencia ambiental. Al practicar el upcycling, aprendemos a valorar los recursos y a repensar nuestra relación con los objetos que nos rodean. Nos desafía a cuestionar el modelo predominante de "usar y desechar" y nos anima a considerar alternativas más sostenibles. El upcycling nos muestra que no todo lo viejo o roto debe ser descartado, sino que puede ser transformado y convertido en algo valioso una vez más.
Referencias bibliográficas
http://www.ijirset.com/upload/2017/march/187_Upcycling.pdf 
187_Upcycling.pdf
 
 
 
 
 ISSN(Online) : 2319-8753 
 ISSN (Print) : 2347-6710 
International Journal of Innovative Research in Science, 
Engineering and Technology 
(An ISO 3297: 2007 Certified Organization) 
Website: www.ijirset.com 
Vol. 6, Issue 3, March 2017 
 
Copyright to IJIRSET DOI:10.15680/IJIRSET.2017.0603187 4066 
 
Upcycling ideas for Sustainable Construction 
and Demolition Waste Management: 
Challenges, Opportunities and Boundaries 
 
Abioye A. Oyenuga1, Rao Bhamidimarri2 
Ph.D Researcher,School of Architecture and Built Environment London Southbank University, 103 Borough Road 
London, SE1 OAA United Kingdom1 
Vice President (Development), London Southbank University, 103 Borough Road London, SE1 OAA United 
Kingdom2 
 
ABSTRACT: Significant effort has been seen with upcycling or repurposing old materials such as soil, wood, metal, 
concrete etc. The concept of upcycling relates to the process of converting waste materials or useless products into new 
materials or products of better quality or better environmental value than in their previous use. This paper explores the 
challenges, opportunities that exist with the development of a recycled and reused building material market. This paper 
also seeks to address how issues behind secondary material in the life cycle of C&D wastes can be resolved by reusing 
and recycling techniques deemed problematic by local recyclers. The paper was developed using a variety of 
multidisciplinary resources within the field of solid waste management. It is hoped that the policy, regulation, circular 
economy recommendations within this paper be adopted as potential options for the municipality to address these 
issues. 
 
KEYWORDS: Construction and demolition (C&D) waste, sustainable construction practices, upcycling, downcycling 
3R’s concept, life-cycle assessment (LCA), repurposing, waste management, solid waste management hierarchy 
 
I. INTRODUCTION 
 
The built environment and the construction industry are often referred to as major consumers of natural resources 
and energy. Evidently, the construction industry is reported to be generating unacceptable levels of waste for many 
decades [1] Waste generation in construction have created a number of concerns in term of energy use and the 
economic impact. This is as a result of the significant amount of construction and demolition (C&D) waste generated 
which as huge impact in contributing to environmental damage both locally and internationally [2]. It is important to 
understand the C&D waste system covering a broad rangeof building materials which is often categorised as: waste 
arising from total or partial demolition of buildings and/or civil infrastructure, waste arising from the construction of 
buildings and/or building civil infrastructure, civil works and/or excavations for foundations and materials arising from 
road construction and maintenance works [3]. 
 
The creativity in reusing many building materials often available to contractors as the idea of upcycling continues to 
create urgent attention. The principle of upcycling also referred to as creative reuse, is the process of transforming by-
product, waste materials, useless and/or unwanted products into the materials or products of better quality for better 
environmental value [4]. Many industrial processes such as plastics and electronic fabrication reply on the consumption 
of finite resources [5]. Moreover, the waste generated may have an environmental impact and can affect human health. 
Within, this context, upcycling describes the use of available and future technologies to minimise waste and resource 
consumption by creating a product with a higher value from waste or by-product waste streams [6]. There is a need to 
http://www.ijirset.com
 
 
 
 
 ISSN(Online) : 2319-8753 
 ISSN (Print) : 2347-6710 
International Journal of Innovative Research in Science, 
Engineering and Technology 
(An ISO 3297: 2007 Certified Organization) 
Website: www.ijirset.com 
Vol. 6, Issue 3, March 2017 
 
Copyright to IJIRSET DOI:10.15680/IJIRSET.2017.0603187 4067 
 
find understanding to the barriers of upcycling concept to sustainable C&D waste management. The idea of sustainable 
development seemed to be the best practice and solution to C&D waste management and to the entire construction 
industry. This idea is to improve the durability and use of recycled materials as well as eliminating the development of 
C&D waste throughout the construction life cycle [7] [8]. 
 
This paper explores the challenges, opportunities that exist with the development of a recycled and reused building 
material market. This paper also seeks to address how issues behind the secondary material and carbon footprint trends 
in the life cycle of C&D wastes can be resolved by reusing and recycling techniques deemed problematic by local 
recyclers.The paper was developed using a variety of multidisciplinary resources within the field of solid waste 
management. Scholarly references (i.e. peer-review journal, professional articles, textbooks, case study and literature 
reviews) were combined with government documentation to provide a background of the life cycle of building material 
and related issues behind the development of secondary material.It is hoped that the policy, regulation, circular 
economy recommendations within this paper be adopted as potential options for the municipality to address these 
issues. This paper focused mainly on construction and demolition (C&D) wastes. 
II. PROBLEMS WITH MANAGING C&D WASTE 
 
Waste materials resulting construction and demolition of buildings and infrastructure constitute a significant amount 
(10-15%) of the total municipal social waste stream. The term “waste” has become quite common in many municipals 
and can be referred to as any materials by-product of human and industrial activity that has no residential value [9]. 
Arguably, waste poses a threat to the environment to human health if it is not effectively managed, recovered and 
considerably disposed of. In 2011, study by WARP estimated that over 100 million tonnes of inert construction, 
demolition and excavation (CD&E) waste was being generated each year in England [10] Also an estimated 20 million 
tonnes of unused waste has been diverted to landfill as CD&E waste remains a major component of fly-tipped waste 
and is estimated by the Environment Agency to be responsible for around one third all fly-tipping incidents [11]. A few 
studies suggest that about 10 to 30% of C&D waste materials that end up as waste on construction site have been 
unused which accounted for true cost of construction waste that can be up to 15 times more than the waste disposal 
costs when labour and material costs are considered [12], [13], [14]. 
 
The construction industry, therefore, is increasingly coming under pressure to enhance resource efficiency and 
reduce waste. These problems will become even more complex in the case of lack of management on larger 
construction projects. There are numerous research works carried out on C&D waste and the findings show several 
negative impacts to the environment, social and economy of a nation [14], [15], [16]. These impacts somewhat 
contribute to a reduction in work productivity and thus reduce the overall performance of many construction projects 
[17]. The need for a sustainable approach to managing C&D waste continues to attract many contractors, local 
recyclers and researchers in recent times. 
A. SUSTAINABLE APPROACH TO C&D WASTE MANAGEMENT 
With the pursuit of sustainability across the world, there has been a huge focus on C&D waste management. The 
UK construction industry has focused on “green initiatives” to meet all sustainability requirements. Since 2012, the 
construction industry has shown significant efforts in fulfilling the sustainability requirements to effective management 
of C&D waste by investing on “Halving C&D Waste to Landfill” as implemented by the UK Sustainable Construction 
Strategy [18]. This initiative sets a national target to “Zero C&D waste” to landfill by 2020 as UK Government 
continue to embark on a long-term ambition to end the disposal of C&D waste in a landfill as far as practicable. 
 
To meet the target set for 2020 national policy on waste management has been strengthened by preparing for a more 
sustainable approach to reuse, recycle and other material recovery practices [19]. Following the pursuit of sustainability, 
some of fiscal and regulatory measures such as landfill taxes, aggregate levy, Site Waste Management Plan, BREEAM 
standard (offering credit for diversion of C&D from the landfill 75% by weight and 65% by volume) are already 
http://www.ijirset.com
 
 
 
 
 ISSN(Online) : 2319-8753 
 ISSN (Print) : 2347-6710 
International Journal of Innovative Research in Science, 
Engineering and Technology 
(An ISO 3297: 2007 Certified Organization) 
Website: www.ijirset.com 
Vol. 6, Issue 3, March 2017 
 
Copyright to IJIRSET DOI:10.15680/IJIRSET.2017.0603187 4068 
 
driving resource efficiency [20]. 
B. DESIGN OUT WASTE 
The ultimate goal of a sustainable approach to managing C&D waste is to strategically design to reduce the amount 
of waste produced. The site waste management practices worldwide have been able to fulfil this vision by “design-out 
waste” at various stages of construction [21]. Arguably, however, the best opportunities for enhancing materials 
resource efficiently in construction projects occur during the design stage [15]. Implementing these possible 
opportunities can further provide huge reductions in cost, waste and carbon emissions. Designers often use five key 
principles (design for reuse and recovery, design for off-site construction, design for materials optimisation, design for 
waste efficient procurement and finally design fro deconstructionand flexibility) these five principles are mostly 
guided by an extensive consultation, research and work carried regulatory bodies [22]. 
It is quite important to understand the design for reuse of material components and/or entire building has substantial 
potential to reduce the environmental weights from construction. With reuse, the effective life of materials is extended 
and thus annualised weights are spread over the years. Reuse, on the other hand in the waste hierarchy is preferable to 
recycling, where additional processes are involved [22]. The advantage of designing for off-site construction are well 
discussed in modern times as this process has potential in reducing C&D waste. 
C. IMPLEMENTING 3R’S PRINCIPLE 
C&D waste management is required various stages within the solid waste management hierarchy model (SWMH). 
Figure 1 shows the various stages required for waste management as suggested by Peng et al. [23]. These authors 
recommend that C&D waste management should be executed by techniques such as:reducing, reducing, reusing and 
recycling. However, certain events such as avoidance and minimisation, which further depicts the reduction, process 
alongside the recycling operations, which are considered to be desirable. Waste management concept is guided by the 
level of hierarchy known as the ‘3R’s principle’, and this is explained by El-Haggar in 2007 [24]. 
 
 
 
Figure 1: Solid waste management hierarchy model 
 
The SWMH model produces an integrated approach in which options of waste management can be considered and thus 
serves as a systematic tool for those who generate and manage spare [24]. El-Haggar [24] argued that when waste is 
being managed effectively, it could generate various benefits through the whole life cycle of the waste from its 
generation to its end disposal. 
 
http://www.ijirset.com
 
 
 
 
 ISSN(Online) : 2319-8753 
 ISSN (Print) : 2347-6710 
International Journal of Innovative Research in Science, 
Engineering and Technology 
(An ISO 3297: 2007 Certified Organization) 
Website: www.ijirset.com 
Vol. 6, Issue 3, March 2017 
 
Copyright to IJIRSET DOI:10.15680/IJIRSET.2017.0603187 4069 
 
D. Life Cycle Assessment (LCA) 
The environmental concern all C&D waste materials have grown for many decades. LCA is an important tool used 
to support decision-making in the field of waste management and also helps to determine environmental viability. The 
LCA is a popular tool used to investigate the potential environment impact, throughout a product’s life [25]. 
 
 
Figure 2: Life Cycle Assessment (LCA) 
 
International Organisation for Standardization (ISO) first developed the LCA methodology and framework by 
considering four unique phases: goal and scope definition, inventory analysis, (input/output), impact categories and 
interpretations. 
 
 
Figure 3: Life Cycle Assessment Framework 
 
By analysing the positive and negative environmental effects of all kinds of projects or products, LCA tool, is a 
reliable tool considered for several areas to analyse and to evaluate different policy alternatives [26]. Huang et al. [26] 
use LCA tool to evaluate environmental impacts of using recycled materials in asphalt pavements.The authors 
evaluated and concluded that relevant LCA model could be used a decision support tool for sustainable construction in 
the road industry. Cherubini et al. [27] discouraged the diversion of construction and demolition waste to landfill due to 
the significant environmental and economic impacts. Thus, the integration of LCA model in the construction sector has 
two unique perspectives 1) building material and 2) construction processes. 
Understanding the underlying principle of C&D waste management can be explained through this process as various 
phases’ involved play a vital role in the application of LCA model [27]. Key LCA phase include: pre-construction 
phase, construction, and renovation. Each stage of the construction project life cycle considers Solid Waste 
http://www.ijirset.com
 
 
 
 
 ISSN(Online) : 2319-8753 
 ISSN (Print) : 2347-6710 
International Journal of Innovative Research in Science, 
Engineering and Technology 
(An ISO 3297: 2007 Certified Organization) 
Website: www.ijirset.com 
Vol. 6, Issue 3, March 2017 
 
Copyright to IJIRSET DOI:10.15680/IJIRSET.2017.0603187 4070 
 
Management Hierarchy (SWMH) using the 3Rs (reduce, reuse and recycle) principle as a guide. Thus, the LCA 
inventory process covers the “input and output”, and that impact outcomes are derived from the inventory data 
processed. The life cycle map is developed to explain the waste material flow from the system start to finish. 
III. RECYCLING VS. UPCYCLING 
 
Recycling is a concept most of the construction, and demolition professionals understand and refer to the process of 
converting used construction materials waste into reusable material [4]. Recycling is by all means great for the 
environment, but is it always the best option? After all, recycling requires energy in the form of transportation, as well 
as in the recycling processes itself. The 1995 UK Government White Paper ‘Making Waste Work’[25] had targets for 
increasing the use of waste and recycled materials as aggregates to 30 million tonnes per year by 2006. The UK 
Consultation Paper on sustainable construction ‘Opportunities for Change’ [26] highlights the need for incentives to 
encourage the use of recycled material and acknowledges the importance of economic considerations. 
 
Repurposing (upcycling), on the other hand, refer to taking a product that some may consider being at the end of its 
lifecycle, and restore it to a functional condition of finding an alternate use for it. Repurposing requires minimal energy, 
and by giving a product a second chance at life, and in turn saving a significant amount of waste being diverted to 
landfill [26]. Repurposing old and used objects is a great way to help clean up the environment. Martin and Parsapour 
[5] claim that repurposing is the process by which an object with one use value is transformed or redeployed as an 
object with an alternative use value. Interestingly, repurposing is the use of a tool being re-channelled into being 
another tool, usually for a purpose unintended by the original toolmaker. 
A. Methods of C&D Waste Recycling 
On-site source separation, recycling, storage, and reuse are commonly found on many construction sites. This highly 
effective method of recycling can also be very cost-effective when available site condition allows [25]. Cases where 
contractors can store, recycle and reuse C&D wastes on-site, this represents one of the most efficient methods of 
recycling, saving transportation, storage, and some processing costs. For construction sites that can coordinate on-site 
material processing and storage process, however, financial benefits can be significant. This process is most applicable 
for inert materials such as concrete, asphalt paving, stone, soil, and brick as well as useful for green waste. Some of 
machineries are used for recycling rocks and concrete into new products. Figures 4 and 5 shows typical examples of 
machinery such as conveyors and VSI crushers, used for means of transporting materials between feeders, crushers, 
and screensas well as recycling glass to produce sand. 
 
 
Figure 4: Conveyors for transporting crushed rock waste material (Source: Living-lifestyle, 2014) 
http://www.ijirset.com
 
 
 
 
 ISSN(Online) : 2319-8753 
 ISSN (Print) : 2347-6710 
International Journal of Innovative Research in Science, 
Engineering and Technology 
(An ISO 3297: 2007 Certified Organization) 
Website: www.ijirset.com 
Vol. 6, Issue 3, March 2017 
 
Copyright to IJIRSET DOI:10.15680/IJIRSET.2017.0603187 4071 
 
 
Figure 5: VSI Crusher used for glass recycling into sand product (Source: Living-lifestyle, 2014) 
 
There is a growing market for glass recycling into the sand product in Australia and Europe [29]. Some of recyclers 
and waste management companies in the UK have developed a business-driven solution for the recycling and recovery 
of all non-hazardous construction and demolition waste [25]. The UK recycling rate of ‘non-hazardous C&D waste’ 
reached 87% in 2014 [26]. There is EU Waste Framework Directive (WFD) target for the UK to recycle or recover 
CD&E waste at least 70% of this type of waste by 2020. The UK generated 400 million tonnes of total waste in 2014. 
Half of this was generated by the construction sector. Commercial and industrial activities generated almost 24%, with 
households responsible for a further 14% [27], [28]. Growing evidence suggests that previous studies considerably 
underestimated that amount of C&D waste being recycled or reclaimed. Regarding recycling, the landfill tax has 
contributed to a big increase in the number of fixed and mobile crushing and recycling sites [29]. 
B. Methods of C&D Waste Upcycling (Repurposing) 
In theory, upcycling materials should be a straightforward process; however, creating a market for recycled materials 
as important for stimulating the repurposing of recyclable material in the construction industry [6]. Repurposed 
materials remind construction and demolition professionals of the 3R’s (reduce, reuse and recycle) principle where 
‘reduce’ simply means the reduction in consumption of new materials and the reduction of waste. The term ‘reuse’ 
under the 3R’s concept refers to the act of using the waste material again and again for its original function while 
‘recycle’ simply refers to breaking down waste into raw materials, which are then later used to make new materials, 
where additional energy inputs are required [6]. 
With the desire to incorporate an eco-friendly approach to buildings at its height, design, construction, and 
demolition professionals are looking for creative ways to reuse old building waste materials in new construction. C&D 
waste such as wood and metals make ideal repurposed items for constructing large frames such that frames can be 
covered with clear sheets of repurposed plastics acting as weather protective material. Hard rock and soil are often sent 
to impact crushers used in quarrying and construction works. Depending on the waste material, once it’s broken down, 
it can very often be repurposed to have another construction uses (i.e. the conversion of concrete into gravel as shown 
in Figure 6). 
 
http://www.ijirset.com
 
 
 
 
 ISSN(Online) : 2319-8753 
 ISSN (Print) : 2347-6710 
International Journal of Innovative Research in Science, 
Engineering and Technology 
(An ISO 3297: 2007 Certified Organization) 
Website: www.ijirset.com 
Vol. 6, Issue 3, March 2017 
 
Copyright to IJIRSET DOI:10.15680/IJIRSET.2017.0603187 4072 
 
 
Figure 6: HIS Impact Crushers (Source: Living-lifestyle, 2014) 
IV. CHALLENGES AND OPPORTUNITIES 
 
Despite the importance of repurposing C&D waste material considering the fore coming scarcity of raw materials 
and the anthropogenic impact on the environment, the concept of repurposing waste material faces many challenges. 
Most developed countries do not support the idea of repurposing C&D waste materials and would rather prefer the use 
of new building materials, which are not readily available around the world. Consequently, a number of people upcycle 
waste materials as a matter of survivability. Other key challenges relate to the development of problematic and 
unaesthetic structures that are not mechanically stable [28]. Special focus should be placed o producing simple 
structures while preserving the ability to aesthetically embrace repurpose material. The social acceptance for 
repurposing C&D waste material in new developments continue to become the greatest challenge. However, the 
opportunities for recycling and repurposing C&D waste continue to attract a number of local contractors and recyclers. 
 
Opportunities with C&D Waste Recycling 
Construction and demolition waste materials recovery facilities and general waste management practices have 
promoted the idea sustainability within the construction industry for many decades [30]. Reducing the amount of C&D 
waste has lots of cost saving through lower disposal and labour costs through handling and process [31]. When site 
space allows, on-site source separation of C&D materials can yield reduced or even eliminated tipping fees. Building 
waste materials account for about half of all materials used and about half the global solid waste generated. They have 
an environmental impact at every phase of the building process (i.e. extraction of raw material, processing, 
manufacturing, transportation, construction and disposal at the end of a building’s useful life. 
 
 
Figure 7: Perspective for building supply chain 
http://www.ijirset.com
 
 
 
 
 ISSN(Online) : 2319-8753 
 ISSN (Print) : 2347-6710 
International Journal of Innovative Research in Science, 
Engineering and Technology 
(An ISO 3297: 2007 Certified Organization) 
Website: www.ijirset.com 
Vol. 6, Issue 3, March 2017 
 
Copyright to IJIRSET DOI:10.15680/IJIRSET.2017.0603187 4073 
 
Across the global, governments have responded to the urgent need to reduce waste with regulation and legislation 
that have controlled a market for building materials and products derived from the C&D waste stream. There are 
clear opportunities for business and industry to invest in activities that will create profit and improve environmental 
outcomes by extracting valuable resources from the C&D waste stream. Recycling can be used to decrease the 
environmental impacts of waste management and, by displacing extraction and processing of primary materials, of 
other lifecycle stages as well. 
 
Opportunities with C&D waste Upcycling 
The principle of upcycling and recycling C&D waste has many opportunities for waste producers and many local 
recyclers. Upcycling provides a huge resourcebank of materials that have already been produced. Huygen [30] claim 
that the term ‘repurposing’ is a possible strategy for sustainability in managing C&D waste. Repurposing C&D waste 
is the process of using waste in a totally different way than its initial functions. This new use conserves all of the 
embodied energyrequired to extract, transport, and process the raw materials [35]. 
Interestingly, Tate [31] reports that there are huge opportunities with C&D waste particularly concrete and excavated 
soil. The author claims that broken up pieces of concrete otherwise known, as ‘urbanite’ is such material that can be 
reused in a variety of ways for new construction works. Urbanite can be used to create a patio or walkway that looks 
similar to flagstone. For many decades, recycled concrete used for patios, walkways, and planters. While using urbanite 
for a project requires extra human effort, it keeps waste concrete from filling up landfills and requires little or no 
energy consumption. 
 
 
Figure 8: An urbanite patio stained with iron sulphate (Source: Terra Nova Ecological Landscaping, 2013) 
V. LONDON 2012 OLYPMIC PARK: A CASE STUDY FOR RECYCLING AND UPCYCLING 
 
The case study of London 2012 Olympic park reflects the importance of reuse, recycling, and repurposing building 
waste materials. Queen Elizabeth II Olympic Park is at 560 acres, and as large as London’s frame Hyde Park, falls 
within four East London Borough and is the largest urban regenerated park redeveloped in Europe in more than 150 
years. The case study identifies redevelopment project at demolition and construction stage, recycling and upcycling 
activities and the benefits of embarking on sustainable construction by investing in waste reduction and the recovery on 
a construction and demolition project. 
The Olympic Park has many buildings and structures built with bricks that were easy to reclaim especially Yellow 
Stock, Red Rubber and Staffordshire Blue bricks. The construction of the Olympic Park is built on principles of social 
and environmental sustainability. One of the innovative sustainable initiatives is to reuse and repurpose the materials 
from the demolition area to build the new Olympic Park. During the construction of the Olympic Park for the London 
2012 Games, 90% of all construction demolition waste was recycled. Also, approximately 25% of all aggregates used 
on the Olympic project were from recycled materials [36]. 
http://www.ijirset.com
 
 
 
 
 ISSN(Online) : 2319-8753 
 ISSN (Print) : 2347-6710 
International Journal of Innovative Research in Science, 
Engineering and Technology 
(An ISO 3297: 2007 Certified Organization) 
Website: www.ijirset.com 
Vol. 6, Issue 3, March 2017 
 
Copyright to IJIRSET DOI:10.15680/IJIRSET.2017.0603187 4074 
 
 
Figure 9: London 2012 Olympic Park recycling onsite location (Source: BioRegional Development Group 2009). 
 
The challenge or reducing global greenhouse gas emissions has been a top priority for Olympic Park Team. The 
strategy used for the construction of the Olympic Park covers key areas such as contractual relationship, specialist 
subcontractors, decision-making process, working with designers and materials storage, demolition and reclamation 
audits, monitoring and data collection. About 90% of the material by weight arising through demolition works to be 
reused, repurposed or recycled following the Olympic Development Agency’s waste 3R’s principle (i.e. reduce, reuse, 
recycle, recover and disposal). 
 
Specialist reclamation subcontractors have the knowledge and technique to achieve higher levels or reclamation that 
most generalist demolition firms. Using specialist contractors is beneficial to the entire redevelopment of the Olympic 
Park as they are experienced in finding markets and end users, ensuring materials are reused, repurposed or recycled 
[36]. In order to effectively manage the construction and demolition activities at the Olympic Park redevelopment, the 
Decision Making Process was used to manage subcontractors carrying out material reclamation during demolition 
works as well as working in partnership with Building Research Establishment (BRE). 
 
A strategic tool such as SMARTwaste was employed with BRE’s contribution as other issues with contractors were 
monitored during work progress [37]. Challenges such as lack of non-contractual terms among contractors and waste 
transfer station were identified as well as it provides lesson learned on monitoring process. Material tracking systems 
are a useful tool for managing and monitoring waste arising onsite. Monitoring process also helped the group to 
educate designers on how a material can be reused and repurposed. Material storage poses other key challenges during 
the decision-making process. Suitable storage secured form the very beginning of demolition is vital for maximising 
rates of reclamation and reuse by providing a holding place for materials/items until such tie as they are required or 
purchased. 
 
 
http://www.ijirset.com
 
 
 
 
 ISSN(Online) : 2319-8753 
 ISSN (Print) : 2347-6710 
International Journal of Innovative Research in Science, 
Engineering and Technology 
(An ISO 3297: 2007 Certified Organization) 
Website: www.ijirset.com 
Vol. 6, Issue 3, March 2017 
 
Copyright to IJIRSET DOI:10.15680/IJIRSET.2017.0603187 4075 
 
 
Figure 10: Material storage for reclaimed granite, concrete and yellow stock bricks on the Olympic Park 
 
 Used concrete is also stored and later repurposed for floor paving and pedestrian walkways. 
 
 
Figure 11: Repurposed concrete for floor paving at Construction Zone A 
 
Concrete is inherently difficult to dispose of because it’s heavy and a pain to transport. While it’s a good idea to keep 
any material out of the landfill, concrete’s durability and high-embodied energy makes it an especially viable candidate 
for reuse and repurpose [9]. 
 
 
Figure 12: Repurposed concrete for walkway pavement 
 
Site investigation identifies brick buildings around the Olympic Park with the potential for reclamation and provided a 
list of reclamation work [37]. Crushed recycled concrete can also be used as the dry aggregate for brand new concrete if 
it is free of contaminants. At the Olympic Park, Yellow stock and Staffordshire blue bricks were reclaimed and stored 
as well as reused. Yellow stocks are reused directly onsite and some are sold to specialist demolition contractors whilst 
others are sent to recycling base station [38]. 
http://www.ijirset.com
 
 
 
 
 ISSN(Online) : 2319-8753 
 ISSN (Print) : 2347-6710 
International Journal of Innovative Research in Science, 
Engineering and Technology 
(An ISO 3297: 2007 Certified Organization) 
Website: www.ijirset.com 
Vol. 6, Issue 3, March 2017 
 
Copyright to IJIRSET DOI:10.15680/IJIRSET.2017.0603187 4076 
 
 
 
Figure 13: Reclaimed yellow stock bricks used to create seating areas on the Greenway and red and blue being reclaimed at Construction Zone B. 
 
The case study suggests that contractors and designers need to embark on designing out waste, develop a quality Site 
Waste Management Plan (SWMP) as well as materials logistics plan in order to achieve a better outcome for C&Dwaste recycling and upcycling activities. 
VI. KEY RECOMMENDATIONS 
 
The following key recommendations were established to provide potential solutions that cold address the challenges 
that exist surrounding the creation of a recycled building material market. The recommendations were established to 
address the challenges shown in the key research findings and are based on both UK and international waste 
management best practice examples from case studies, policies, regulation and circular economy perspectives. 
 
A. Waste Policy and Regulation 
EU vision for waste reduction in member states set upwaste management directive target recovery rate ofat least 70% 
of C&D waste by 2020 [39]. This ultimate target motivates the C&D recycling and reuse activities in the UK. 
 
 
Figure 14: EU vision 2020 
 
The waste policy and regulation recommend that: 
 Waste hierarchy: This is incorporated in all C&D waste management activities across the country. 
http://www.ijirset.com
 
 
 
 
 ISSN(Online) : 2319-8753 
 ISSN (Print) : 2347-6710 
International Journal of Innovative Research in Science, 
Engineering and Technology 
(An ISO 3297: 2007 Certified Organization) 
Website: www.ijirset.com 
Vol. 6, Issue 3, March 2017 
 
Copyright to IJIRSET DOI:10.15680/IJIRSET.2017.0603187 4077 
 
 Diversion of waste from landfill: based on the waste hierarchy the UK government policy is to reduce the 
amount of waste being diverted to landfill, which is part of the UK Sustainable Construction Strategy to 
meet the national target by “Halving C&D waste to Landfill”. Also, the Environmental Permitting (England 
and Wales) Regulations 2010 and Landfill Allowance Scheme (Wales) impose a restriction on the type and 
amount of waste that can be disposed of in landfills in England and Wales. 
 Increase recycling: UK government’s objective is to create awareness on reuse, repurposing and recycling 
among many citizens and organisations. This motivation helps to meet the EU waste directive target of 
achieving 70% waste reduction. 
 Reduction of waste from the economy:The amount of C&D waste produced by construction sites around the 
UK is significantly high. Producer Responsibility Obligations (Packaging Waste) Regulations 2007 place 
responsibility on the producers of packaging waste to recover and recycle a certain amount of packaging. 
 Controlling Hazardous Waste: Laws impact the way that hazardous can be disposed of in England and 
Wales. 
 Shared Responsibility: The UK waste management policies operate on the basis of “shared responsibility” 
Almost everyone including all construction and demolition waste users have responsibilities in preventing 
waste growth. As part of the society also have a responsibility to reuse, repurpose, recycle and dispose 
waste properly. 
 
B. Circular Economy 
A circular economy is an alternative to a traditional linear economy (i.e. make, use, dispose of) in which resources is 
kept in use for as long as possible, extract the maximum value from them whilst in use, then recover and regenerate 
products and materials at the end of each service life [38]. The recommendations of the circular economy are important 
as it creates new opportunities for growth. The circular economy will boost the EU's competitiveness by protecting 
businesses against scarcity of resources and volatile prices, helping to create new business opportunities and 
innovative, more efficient ways of producing and consuming. 
 
 
Figure 15: Circular economy recommendations 
 
Circular economy helps to reduce waste, it drives greater resource productivity, delivers a more competitive UK 
economy, position the UK to better address emerging resource security/scarcity issues in the future and help reduce the 
environmental impacts of managing C&D waste. The use of a circular economy offers considerable economic benefits 
by recycling and upcycling C&D waste. UK vision meets the EU target for 2020 and urges that many municipals across 
the country can address the current C&D waste practices and meet the circular economy requirement by following the 
recommendations: 
 UK’s economy assumes to have achieved 70% of waste reduction 
http://www.ijirset.com
 
 
 
 
 ISSN(Online) : 2319-8753 
 ISSN (Print) : 2347-6710 
International Journal of Innovative Research in Science, 
Engineering and Technology 
(An ISO 3297: 2007 Certified Organization) 
Website: www.ijirset.com 
Vol. 6, Issue 3, March 2017 
 
Copyright to IJIRSET DOI:10.15680/IJIRSET.2017.0603187 4078 
 
 Ensure full implementation and enforcement of existing EU and the UK waste management laws 
 30 million tonnes material inputs into the UK economy 
 Set realistic and achievable packaging recycling targets 
 20% less waste produced (i.e. about 50 million tonnes less waste) 
 There are four key ways (i.e. lean production, reducing waste, goods-to-services) to achieve cost and energy 
savings. 
 Promote diversion of packaging materials from the landfill for reuse, repurpose (upcycle) or recycle. 
VII. CONCLUSION 
 
With the significance of C&D upcycling and recycling, need to meet the EU target for 2020 to cut down waste by 
70%, and if nothing else, the paper shows that the success of any type of used C&D waste material market depends on 
the strategic approach, extent of waste generated and stakeholders involved. As with any waste management model, 
there is not one simple response to reducing waste than applying best practice across all regions. The idea of “upcycling” 
for C&D waste management requires minimal energy, and by giving a product a second chance at life, and in turn 
saving a significant amount of waste sent to landfill. The paper found out that there are some challenges facing 
recycling and upcycling output. Many developed countries do not support the idea of C&D waste upcycling and would 
rather prefer new building materials, which are not readily available. Among other challenges are survivability and the 
use of problematic and unaesthetic structures that are not mechanically stable. Despite the challenges in upcycling, the 
paper suggests that the opportunities found with C&D waste upcycling and recycling is far more than its challenges. 
The case study review in this paper provides evidence for recycling and repurposing C&D waste with special focus 
concrete, soil and bricks. 
The paper acknowledges that there are clear differences between “upcycling, recycling and downcycling”. Upcycling 
is more desirable out of the three as it involved the conversion of low-value materials into high-value products, whilst 
downcycling remains the opposite of upcycling in context. Recycling, on the other hand, is the first step in reaching a 
more comprehensive and sustainable solutions for C&D waste management that can eventually limit the amount of new, 
virgin materials that need to be produced. However, the boundaries within these concepts lie within the actual waste 
system under study. The London Olympic 2012 case study on reuse of concrete and bricks shows the benefits of both 
recycling and upcycling concepts with unique opportunities to capitalise on the need to meet circular economy 
requirements. The United Kingdom has become stewards of a more sustainable built environment for many yearsand 
gradually working effortlessly to meet EU 2020 vision. This paper hoped that the recommendations herein on waste 
policy and regulation and that on the circular economycould be used as potential options for the municipality to address 
current C&D waste issues. 
ACKNOWLEDGMENT 
 
The author would like to acknowledge the suggestions of the editor and three anonymous academic reviewers for 
their valuable comments on earlier drafts of this paper. 
 
REFERENCES 
 
[1] Del Rio Merino, M. and Garcia, P. I. “Sustainable Construction: Construction and Demolition waste reconsidered” Department of Architecture 
Construction Polytechnic University f Madrid (UPM) Madrid Spain 2001. 
[2] Seadon, J. K “Sustainable waste management systems” Journal of Clearer Production, 18(16-17), pp.1639-1651, 2010. 
[3] Bansal, S. and Singh, S. K. “A Sustainable Approach towards the Construction and Demolition Waste” International Journal of Innovation 
Research in Science, Engineering and Technology, 3(2), pp. 9226-9235, 2014. 
[4] Zhuo, C. and Levendis, Y. A., "Upcycling waste plastics into carbon nanomaterials: A review". Journal of Applied Polymer Science. 131 (4), 
2014. 
[5] Martin, M. and Parsapour, A., "Upcycling wastes with biogas production : An energy and economic analysis". Venice 2012: International 
Symposium on Energy from Biomass and Waste, 2012 
http://www.ijirset.com
 
 
 
 
 ISSN(Online) : 2319-8753 
 ISSN (Print) : 2347-6710 
International Journal of Innovative Research in Science, 
Engineering and Technology 
(An ISO 3297: 2007 Certified Organization) 
Website: www.ijirset.com 
Vol. 6, Issue 3, March 2017 
 
Copyright to IJIRSET DOI:10.15680/IJIRSET.2017.0603187 4079 
 
[6] Sung,K., Cooper,T., & Kettley,S., “Individual upcycling practice: Exploring the possible determinants of upcycling based on a literature 
review.” Copenhagen, Sustainable Innovation 2014 Conference 
[7] Abdelhamid, M. S., “Assessment of different construction and demolition waste management approaches”, HBRC Journal, 10(3), pp.317-326, 
2014 
[8] Sieffert, Y., Huygen, J. M. and Daudon, D., “Sustainable construction with repurposed materials in the context of a civil engineering – 
architecture collaboration” Journal of Cleaner Production, 67(1), pp. 125-138, 2014 
[9] Yeheyis, M., Hewage, K., Alam, S.M., Eskicioglu, C. and Sadiq, R. “An overview of construction and demolition waste management in 
Canada: a lifecycle analysis approach to sustainability, Clean Techno Environ Policy Vol. 15, No.1, pp.81-91, 2013. 
[10] Shetty, R. S., “Construction and demolition Waste – An Overview of Construction Industry in India”, International Journal of Chemical, 
Environmental & Biological Sciences (IJCEBS), Vol. 1, No. 4, pp. 640-642, 2013. 
[11] Hunt, N. and Shields, J. “Waste Management Strategy 2014 and beyond”, Loughborough University, 2014. 
[12] Begum, R. A. and Siwar, C., “A Benefit-Cost Analysis on the economic feasibility of Construction waste minimization: the case of Malaysia”, 
Resources Conservation & Recycling, pp. 86-98, 2006. 
[13] Zurbrugg, C., Gfrerer, M., Ashadi, H., Brenner, W. and Kuper, D. “Determinants of sustainability in solid waste management – The Gienyar 
Waste Recovery Project in Indonesia”, Waste Management, 32(11), pp. 2126-2133, 2012. 
[14] BREEnvironment Assessment Method “Good Practice Guidance: Sustainable Design and Construction”, [Online] 
www.breeam.com/filelibrary/BREEAM [Accessed on 26/05/2016], 2012 
[15] Abdelhamid, M. S. “Assessment of different construction and demolition waste management approaches”, HBRC Journal, Vol. 10, No.3, 
pp.317-326, 2014. 
[16] Department for environmental Food & Rural Affairs, “ UK Statistics on Waste – 2010 to 2012 Government Statistical Service, 2012. 
[17] Villoria, S. P., del Tio Merino, M. and Porras-Amores, C. “ Estimation of construction and demolition waste volume generation in new 
residential buildings in Spain” Waste Management Research, Vol. 30, No. 2, pp. 137-146, 2012. 
[18] Jeffrey, C “Construction and demolition Waste Recycling A literature review”, Dalhouseie University’s Office of Sustainability, Waste 
Management Committee Review Team, 2011. 
[19] WRAP “Halving Construction waste to landfill by 2012: WRAO Construction Briefing Note”, 2012, [Online] Available at: www2.wrap.org 
[Accessed on 28/10/2015] 
[20] Aadal, H., Rad, K. G., Fard, A. B., Sabet, P. G. P., and Harirchian, E.“Implementing 3R Concept in Construction Waste Management at 
Construction Site”, J. Appl. Environ.Biol. Sci., Vol. 3 No.10, pp. 160-166, 2013. 
[21] WRAP “Designing out Waste: Tool for Buildings (DoWT-B): Reference guide”, 2009, [Online] Available at: www.wrap.org.uk/sites/files 
[Accessed on 23/052016] 
[22] Peng, C. L., Scorpio, D. E., and Kibert, C. J. “Strategies for successful construction and demolition waste recycling operations”, Construction 
Management & Economics, Vol. 15, No. 1, pp.49-58.(1997) 
[23] El-Haggar, S. M. “Sustainable Industrial Design and Waste Management: Cradle-to-cradle for Sustainable Development, Elsevier Academic 
Press Maryland Heights, MO., 2007. 
[24] Banar, M. Cokaygil, Z. and Ozkan, A., “Life cycle assessment of solid waste Management options for Eskisehir, Turkey” Waste 
Management,Vol. 9, No 1, pp. 1-9, 2008. 
[25] Huang, Y., Bird, R., Heidrich, Development of a life cycle assessment tool for Construction and maintenance of asphalt pavements", Journal 
of Cleaner Production, Vol. 17, No.1, pp283-296, 2009. 
[26] Cherubini, F., Bargigli, S., Ulgiati, S., “Life cycle assessment (LCA) of waste management strategies: Landfilling, sorting plant and 
incineration”, Energy, article in press., 2009. 
[27] Department of Education (1996), “Making Waste Work, HMSO, London 
[28] DETR, “Opportunities for Change: Consultation Paper on a UK Strategy for Sustainable Construction, HMSO, London, 1998 
[29] Nigel Lawson Ian Douglas Stephen Garvin Clodagh McGrath David Manning Jonathan Vetterlein, "Recycling construction and demolition 
wastes – a UK perspective", Environmental Management and Health, Vol. 12 Iss 2 pp. 146 – 157, 2001 
[30] Lawson, N., Douglas, I., Garvin, S., McGrath, C., Manning, D. and Vetteriein, J., “Recycling Construction and Demolition Wastes – A UK 
perspective”, Environmental Management and Health 12(2), pp. 146-157, 2001 
[31] Department for Environment Food & Rural Affairs, “UK Statistics on Waste”, Government Statistical Service, [Online] Available at: 
www.gov.uk/government [Accessed at: 23/05/2016] , 2015 
[32] Huygen, H., “La poubelle et l’architecte e Vers le reemploy des materiaux. Actes Sud, coll. L’Jmpense, Arles, p. 184, 2008 
[33] Tate, S., “Urbanite: repurposing old concrete” [Online] Available at: www.concretenetwork.com [Accessed on 31/05/2016], 2013 
[34] McDonald, R., “Upcycling and Recycling in Big business: What’s the Bottom Line?”, Earth Legacy Inc., 2015 
[35] BioRegional Development Group, “Reuse and recycling on the London 2012 Olympic Park: Lessons for demolition, construction and 
regeneration, 2012 
[36] BioRegional Development Group , “Olympic Park Steel Frame and Brick Reclamation Proposal”, 2007 
[37] WRAP, “Reclaimed building products guide: a guide to procuring reclaimed building products and material for use in construction projects, 
2011 
[38] EC DG ENV, “Service contract on management of construction and demolition waste”, Final Report Task 2 – Management of C&D Waste. 
European Commission DGENV, 2012 
 
http://www.ijirset.com
http://www.breeam.com/filelibrary/BREEAM
http://www2.wrap.org
http://www.wrap.org.uk/sites/files
http://www.gov.uk/government
http://www.concretenetwork.com

Continuar navegando

Materiales relacionados

15 pag.
5 pag.
Residuos 2

Universidad Nacional Abierta Y A Distancia Unad

User badge image

Diego Rodriguez

21 pag.
Residuos 3

Universidad Nacional Abierta Y A Distancia Unad

User badge image

Diego Rodriguez