Logo Studenta

22-Calculo-Vectorial-Unidad-1

¡Este material tiene más páginas!

Vista previa del material en texto

Cálculo vectorial		 LIC. CFM. VIOLICIA SOLEDAD SALA MAZARIEGO
 Universidad Nacional Autónoma de México
Facultad de Estudios Superiores
Plantel Aragón
INGENIERIA INDUSTRIAL
CALCULO VECTORIAL
REPORTE DE PRACTICA N.2
TEMA: CONCEPTOS FUNDAMENTALES. 
SUBTEMA: PRESIÓN.
GRUPO:8027
NOMBRE DEL PROFESOR: VELAZQUEZ VELAZQUEZ DAMASO
NOMBRE DEL ALUMNO: CORTES HERNANDEZ RICARDO 
FECHA DE ENTREGA: OCTUBRE DEL 2020
__________________________________________________
 LIC. CFM. VIOLICIA SOLEDAD SALA MAZARIEGO
fortinomarquez@hotmail.com
@
Presentación. 
La siguiente antología está diseñada para que el alumno que cursa la asignatura de CÁLCULO VECTORIAL, aprenda los contenidos temáticos que abordaremos durante el semestre.
Cada actividad aborda una competencia que será una herramienta para cursos posteriores, por lo que es de vital importancia que el estudiante las realice construyendo su propio conocimiento.
Una parte fundamental del presente trabajo se refiere a la resolución de problemas como un aprendizaje significativo realizado por descubrimiento, exige la transformación y reintegración del conocimiento existente para adaptarse a las demandas de una meta específica, es decir, el solucionador relaciona intencionalmente una proposición potencialmente significativa del planteamiento de un problema a su estructura cognoscitiva, con el propósito de obtener una solución significativa.
 (
UNIDAD 1
Álgebra 
de 
Vectores
)
1.1 Definición de un vector en R2, R3 y su Interpretación geométrica.
Vectores en el plano:
 es el conjunto de vectores con números reales. Como cualquier punto en el plano se puede escribir en la forma es evidente que se puede pensar que cualquier punto en el plano es un vector en y viceversa, sin embargo para muchas aplicaciones en física es importante pensar en un vector no como un punto sino como una entidad que tiene “longitud” y “dirección”.
Definición geométrica de un vector: El conjunto de todos los segmentos de recta dirigidos equivalentes a un segmento de recta dirigido dado se llama vector. Cualquier segmento de recta en ese conjunto se llama una representación del vector.
Definición algebraica de un vector: un vector v en el plano xy es un par ordenado de números reales . Los números a y b se llaman elementos o componentes del vector v. El vector cero es el vector 
Vectores en el espacio:
Cualquier punto en el espacio se puede representar como una terna ordenada de número reales . Para representar un punto en el espacio, se comienza por elegir un punto en . Se llama a este punto el origen, denotado por 0. Después se dibujan tres rectas perpendiculares entre sí, a los que se llaman el eje x, eje y y eje z. 
Los tres ejes en nuestro sistema determinan tres planos coordenados, que se llaman plano xy, plano xz y plano yz. Teniendo nuestra estructura construida de ejes coordenados y planos podemos describir cualquier punto en de una sola manera: 
Evidencia 1:
(Línea de tiempo) Hacer una reseña histórica del nacimiento del Cálculo de varias variables, haciendo hincapié en la situación económica, política y cultural del ambiente en el que se desarrolló, así como la cognitiva, en cuanto al requisito particular del ritmo instantáneo de cambio de variables, haciendo notar que en la actualidad las funciones de varias variables tienen muchas aplicaciones ya que se pueden describir fenómenos mediante la interdependencia de varias variables.
Sitios sugeridos:
http://www.uaq.mx/matematicas/c2/
1.2 Introducción a los campos escalares y vectoriales.
Muchas cantidades en geometría y física, como el área, el volumen, la temperatura, la masa y el tiempo, se pueden caracterizar por medio de un número real en unidades de medición apropiadas. Estas cantidades se llaman escalares, y al número real se le llama escalar.
Otras cantidades, como la fuerza, la velocidad, y la aceleración tienen magnitud y dirección y no pueden caracterizarse completamente por medio de un solo número real. Para representar estas cantidades se usa un segmento de recta dirigido cuyo punto inicial es P y el punto final es Q y su longitud (o magnitud) se denota por .
Definición de un vector en el plano mediante sus componentes: 
Si v es un vector en el plano cuyo punto inicial es el origen y cuyo punto final es , entonces el vector v queda dado mediante sus componentes de la siguiente manera: 
Las coordenadas son las componentes de v. Si el punto inicial y el punto final están en el origen, entonces v es el vector cero y se denota por 
1. Si y son los puntos inicial y final de un segmento de recta dirigido, el vector v representado por , dado mediante sus componentes, es . La longitud o magnitud de v es:
2. Si , v puede presentarse puede representarse por el segmento de recta dirigido, en la posición canónica o estándar, que va de a . A la longitud de v se le llama norma de v. Si , es un vecotr unitario 
Evidencia 2:
En los siguientes ejercicios se dan los puntos inicial y final de un vector v 
a) Dibujar el segmento de recta dirigido dado.
b) Expresar el vector mediante sus componentes.
c) Dibujar el vector con su punto inicial en el origen.
	Punto inicial
	Punto final
	Punto inicial
	Punto final
	(1,2)
	(5,5)
	(2,-6)
	(3,6)
	(10,2)
	(6,-1)
	(0,-4)
	(-5,-1)
1.3 La geometría de las operaciones vectoriales.
1.4 Operaciones con vectores y sus propiedades.
Definición de la suma de vectores y de la multiplicación por un escalar:
Sean y vectores y sea c un escalar:
1. La suma vectorial de u y v es el vector 
2. El múltiplo escalar de c y u es el vector 
3. El negativo de v es el vector 
4. La diferencia de u y v es 
Propiedades de las operaciones con vectores:
Sean u, v y w los vectores en el plano y sean c y d escalares:
 
 
 
 
 
 
 
 
Evidencia 3:
1. Calcular y dibujar cada uno de los múltiplos escalares de v:
 
a) 2v; -3v ; ; 
b) Anotar observaciones.
 
c) 4v; - ; ; 
d) Anotar observaciones.
2. Hallar , , 2u+5v; en forma gráfica y analítica
a) ; 
b) ; 
3. Hallar el vector v donde ; 
a) 
b) 
c) 
d) 
4. Se dan el vector v y su punto inicial. Hallar el punto final.
	
	Punto inicial (4,2)
	
	Punto inicial (3,2)
5. Encontrar la magnitud de v
	
	
	
	
	
	
6. Hallar
a) 
b) 
1.5 Descomposición vectorial en 3 dimensiones.
Vectores en el espacio:
En el espacio los vectores se denotan mediante ternas ordenadas . El vector cero se denota . Usando los vectores unitarios , , en la dirección del eje positivo z, la notación empleando los vectores canónicos o estándar para v es:
Las componentes de v se obtienen restando las coordenadas del punto inicial de las coordenadas del punto final, como sigue:
Sean y vectores en el espacio y sea c un escalar:
1. Igualdad de vectores: si y solo si , y 
2. Expresión mediante las componentes: Si v se representa por el segmento de recta dirigido de a , entonces
3. Longitud: 
 
4. Vector unitario en la dirección de v: 
5. Suma de vectores: v
6. Multiplicación por un escalar: 
Nota: Son válidas las propiedades dadas en vectores en el plano
Dos vectores distintos de cero u y v son paralelos si hay algún escalar c tal que 
Evidencia 4:
 
1. Hallar las coordenadas de los puntos mostrados en las figuras.
2. Hallar las coordenadas del punto
a) El punto se localiza tres unidades detrás del plano yz, cuatro unidades a la derecha del plano xz y cinco unidades arriba del plano xy.
b) El punto se localiza siete unidades delante del plano yz, dos unidades a la izuquierda del plano xz y una unidad debajo del plano xy.
c) El punto se localiza en el eje x, diez unidades delante del plano yz
d) El punto se localiza en el plano yz, tres unidades a la derecha del plano xz y dos unidades arriba del plano xy.
3. Hallar las longitudes de los lados del triángulo con los vertices que se indican, y terminar si el triángulo es rectángulo, isosceles o ninguno de ambos.
a) 
b) 
c) 
d) 
4. Hallar las componentes y la magnitud del vectoru, dados su punto inicial y final. Después hallar un vector unitario en la dirección de u y graficar (ambos).
	Punto inicial
	Punto final
	
	
	
	
	
	
	
	
5. Se dan los puntos inicial y final de un vector v.
a) Dibujar el segmento de recta dirigido
b) Hallar las componentes del vector
c) Dibujar el vector con su punto inicial en el origen.
	Punto inicial
	Punto final
	
	
	
	
6. Se dan el vector v y su punto inicial. Encontrar su punto final.
	vector
	Punto inicial
	
	
	
	
7. Hallar cada uno de los múltiplos escalares de v y representar su gráfica.
 
a) 2v; -v ; ; 
b) Anotar observaciones.
 
a) -v; 2v ; ; 
b) Anotar observaciones.
8. Hallar el vector z dado que, ; ; 
a) 
b) 
c) 
d) 
e) 
f) 
9. Demostrar que los puntos son vértices de un paralelogramo.
a) 
b) 
10. Determinar los valores de c que satisfacen la ecuación. Sea y 
a) 
b) 
Definición del producto escalar:
El producto escalar de y es:
El producto escalar de ; es:
Propiedades del producto escalar:
Sean u, v y w los vectores en el plano o en espacio y sea c un escalar:
 
 
 
 
 
Si θ es el ángulo entre dos vectores distintos de ceero u y v, entonces:
 
Los vectores u y v son ortogonales si 
Cosenos directores:
 ; ; 
Definiciòn de proyecciòn y de las componentes vectoriales.
Sean u y v vectores distintos de cero. Sea , donde , es paralelo a v y es ortogonal a v, como se muestra en la figura.
1. A se le llama la proyección de u en v o la componente vectorial de u a lo largo de v, y se denota por .
2. A se le llama la componente vectorial de u ortogonal a v.
Proyecciòn utilizando el producto escalar:
Si u y v son vectores distintos de cero, entonces la proyecciòn de u en v esta dada por:
Evidencia 5:
1. Hallar ; ; ; ; 
	
	
	
	
	
	
	
	
	
	
2. Calcular 
 
 
3. Calcular el àngulo entre vectores:
	
	
	
	
	
	
	
	
	
	
4. Determinar si u y v son ortogonales:
	
	
	
	 
	
	
	
	
5. Encontrar los àngulos de direcciòn del vector:
a) 
b) 
c) 
6. Calcular la proyecciòn de u en v y la componente vectorial de u ortogonal a v:
	
	
	
	 
	
	
	
	 
Definición del producto vectorial ( producto cruz) de dos vectores en el espacio:
Sean y vectores en el espacio. El producto vectorial de u y v es el vector:
Propiedades algebraicas del producto vectorial:
Sean u, v y w vectores en el espacio y sea c un escalar:
 
 
 
 
 
 
Propiedades geométricas del producto vectorial:
Sean u y v vectores distintos de cero en el espacio y sea el ángulo entre u y v:
 
 
 
 
El triple producto escalar:
Para ; y el triple producto escalar esta dado por:
El volumen V de un paralelepípedo con vectores u, v y w como aristas adyacentes está dado por:
Evidencia 6:
1. Calcular: ; y 
a) ; 
b) ; 
c) ; 
d) ; 
2. Calcular y probar que es ortogonal tanto a u como a v
a) ; 
b) ; 
c) ; 
d) ; 
3. Usar los vectores mostrados en la figura para dibujar en un sistema dextrògiro un vector en la direcciòn del producto vectorial indicado.
a) 
b) 
c) 
d) 
4. Usar el triple producto escalar para encontrar el volumen del paralelepìpedo
1.6 Ecuaciones de rectas y planos.
En el plano se usa la pendiente para determinar la ecuación de una recta. En el espacio, es más conveniente usar vectores para determinar la ecuación de una recta.
Una recta L paralela al vector y que pasa por el punto ae expresa por medio de las ecuaciones paramétricas 
 
 
Ecuaciones simétricas 
Planos en el espacio: El plano que contiene el punto y tiene un vector normal puede representarse en forma canónica o estándar, por medio de la ecuación
Reagrupando términos, se obtiene la forma general de la ecuación de unplano en el espacio
Angulo entre dos planos:
 
Por consiguiente, dos planos con vectores normales son
1. Perpendiculares si 
2. Paralelos si es múltiplo escalar de 
Evidencia 7:
1. Hallar conjuntos de ecuaciones paramétricas y simétricas de la recta por el punto paralela al vector o recta dado (para cada recta escribir los números de dirección como enteros).
a) 
b) 
c) 
d) 
2. Hallar conjuntos de ecuaciones paramétricas y simétricas de la recta que pasa por los dos puntos (para cada recta escribir los números de dirección como enteros).
a) 
b) 
c) 
d) 
3. Determinar si las rectas se cortan, y si es así, hallar el punto de intersección y el coseno del ángulo de intersección.
a) 
 
b) 
 
4. Hallar una ecuación del plano que pasa por el punto y es perpendicular al vector o recta dado.
a) 
b) 
c) 
d) 
5. Hallar una ecuación del plano que pasa por 
6. Hallar una ecuación del plano que pasa por 
7. Hallar una ecuación del plano que pasa por el punto y es paralelo al plano yz.
8. Hallar una ecuación del plano que pasa por el punto y es paralelo al plano xy.
9. Determinar si los planos son paralelos, ortogonales o ninguna de las dos cosas. Si no son paralelos ni ortogonales, hallar el ángulo de intersección.
a) 
b) 
c) 
1.7 Aplicaciones físicas y geométricas.
Página 4 de 19

Continuar navegando