Logo Studenta

Resumen primer parcial BIO

¡Este material tiene más páginas!

Vista previa del material en texto

.UNIDAD 1: CARACTERÍSTICASDE LOS SERES VIVOS (qué cosas tiene que tener un ser vivo para considerarlo como tal y lo 
diferencia de aquello que no es un ser vivo). 
• COMPLEJIDAD ESTRUCTURAL: hasta el más sencillo de los seres vivos poseen una complejidad estructural 
insuperable por cualquier otro objeto de la naturaleza, única para poder desarrollar todas sus actividades. Esta es 
mantenida gracias al intercambio constante de materia y energía con su entorno. Los seres vivos estamos formados 
por estructuras celulares, las cuales son la estructura mínima funcional de estos y constituyen un pilar para los 
mismos ya que todos los seres vivos estamos formados por al menos una célula. 
• METABOLISMO PROPIO: conjunto de reacciones químicas que ocurren, de manera ordenada y de acuerdo 
con la demanda específica, en el interior de las células. A través de este se obtienen moléculas y estructuras 
indispensables para la vida. El metabolismo se mantiene gracias a que los seres vivos son sistemas abiertos 
(intercambian permanentemente materia y energía con su entorno). 
• HOMEOSTASIS: capacidad de todos los seres vivos de mantener constante las condiciones físicas y químicas 
(temperatura, concentraciones químicas, presión o salinidad) de su medio interno, independientemente de lo que 
ocurra en el exterior. Un ejemplo es el mantenimiento de la temperatura corporal. 
• REPRODUCCIÓN: los seres vivos son capaces de dejar descendencia o autoperpetuarse, produciendo otros 
sistemas similares a ellos. La reproducción es propia de los seres vivos ya que se genera a partir de su propia 
estructura sin la intervención de un agente externo que la manipule (distinto a la "multiplicación" o "copia" que hace 
el hombre de algunos objetos). Hay dos tipos: SEXUAL (intervienen gametas femeninas y masculinas, no 
necesariamente de 2 progenitores distintos), y ASEXUAL (el individuo se fragmenta originando otro idéntico) 
• CRECIMIENTO Y DESARROLLO: este implica un aumento del tamaño. Los individuos pluricelulares crecen por 
aumento en la cantidad de células que los componen, mientras que en los unicelulares aumenta el tamaño celular 
hasta que la célula se divide y produce dos individuos. El desarrollo está relacionado con las transformaciones que 
sufre un individuo a lo largo de su vida (fisiológicos y morfológicos). 
• IRRITABILIDAD: capacidad de los seres vivos de reaccionar ante las señales que perciben ya sea internas o de 
su entorno. A través de esta los organismos pueden ubicar su alimento, su pareja, el peligro, etc. Los taxismos son 
respuestas de animales a estímulos del ambiente. 
• ADAPTACIÓN: capacidad de todos los seres vivos de modificar su "conducta" frente a estímulos del medio 
interno y externo. Esta es una consecuencia de la irritabilidad. Esta característica se asocia con la evolución. 
• Los seres vivos presentan elementos: carbono, hidrogeno, oxigeno, nitrógeno, fósforo y azufre, que se 
organizan en moléculas orgánicas formando hidratos de carbono, lípidos, proteínas y ácido nucleicos. 
NIVELES DE ORGANZACIÓN DE LA MATERIA 
• SUBATÓMICO: partículas que forman un átomo (n, p+ y e-) 
• ATÓMICO: partículas más pequeñas de un elemento (O2, H2) 
• MOLECULAR: combinación de átomos (H2O, CO2) 
• MACROMOLECULAR COMPLEJO: combinación de distintas moléculas (ribosomas, lipoproteínas) 
• SUBCELULAR/ORGAELAS: estructuras que realizan funciones específicas en las celular (mitocondrias, cloroplastos) 
• CELULAR: unidad estructural y funcional de todo ser vivo (ameba, bacterias) 
• TISULAR: conjunto de celular con características similares que se unen para realizar una función (corales, 
medusas) 
• ÓRGANOS: conjunto de tejidos que forman una unidad funcional (tenia) 
• SISTEMA DE ÓRGANOS: conjunto de órganos que cumplen una función (humanos) 
• POBLACIÓN: conjunto de individuos de una misma especie que cohabitan y coexiste (población de palmeras del 
Palmar, febrero 1890) 
• COMUNIDAD: conjunto de poblaciones y sus interacciones (poblaciones de pasto y arbusto) 
• BIOMA: conjunto de comunidades con mismas condiciones climáticas y en un mismo espacio geográfico (selva 
misionera) 
• BIOSFERA: todos los seres vivos del planeta 
En el nivel subatómico están los protones neutrones y electrones, que al unirse forman átomos (con su específico número y 
disposición de dichos elementos). Este es el nivel atómico. Los tomos al combinarse forman molécula (nivel molecular), por 
ejemplo, la molécula del agua formada por dos átomos de hidrogeno y uno de oxígeno. Luego está en nivel macromolecular 
que incluye moléculas de gran tamaño, como lo son las proteínas formadas por los nucleótidos unidos por enlaces de 
fosfodiéster. Otro ejemplo son los PRIONES. Son agentes patógenos formados por una proteína (PrP) mal plegada, y producen 
encefalopatía espongiforme bovina o la enfermedad de las “vacas locas”. Los priones se acumulan en el cerebro de los 
animales enfermos y generan una estructura esponjosa en la corteza cerebral. Pueden ser enfermedades hereditarias 
(transmisión vertical) o contraídas mediante el contagio entre individuos de distinta especie. La proteína normal tiene una 
secuencia de aminoácidos y posee una estructura de hélices alfa, en cambio la patógena posee más laminas beta (resisten las 
enzimas proteolíticas, es decir, que rompen proteínas, el calor y son solubles al agua); además cuando interacciona con una 
proteína normal altera su estado a prión. 
A continuación, viene el nivel macromolecular complejo, el cual es cuando se unen entre si las macromoléculas. Un buen 
ejemplo de esto son lo VIRUS, formados por una cápsula de proteínas, una molécula de ADN o ARN y, a veces, poseen una 
cubierta membranosa. Son parásitos obligados muy específicos con respecto a la célula que pueden infectar y de la cual 
necesitan la maquinaria sintética para reproducirse. Cuando los virus infectan a la célula pueden hacerlo de dos formas: 
reproduciéndose en el interior de la célula infectada, utilizando todo el material y la maquinaria de la célula, o uniéndose al 
material genético de la célula en la que se aloja, produciendo cambios genéticos en ella. Los virus contienen toda la 
información necesaria para su ciclo reproductor, lo cual es la única función que comparten con los seres vivos; así, generan 
una copia para utilizar la materia, energía y la maquinaria genética de la célula huésped. Un ejemplo de infección viral son los 
BACTERIÓFAGOS. Los bacteriófagos son virus específicos de bacterias. Una vez que infectan a la célula, pueden comportarse 
como agentes infecciosos, produciendo la lisis o muerte de la célula, o bien como virus atenuados, que añaden material 
genético a la célula hospedante. La infección se realiza en etapas: 
1. Fase de fijación: Los virus se unen por la placa basal a la cubierta de la pared bacteriana. 
2. Fase de contracción: La cola se contrae y el ácido nucleico del virus se empieza a inyectar. 
3. Fase de penetración: El ácido nucleico del virus penetra en el citoplasma de la bacteria, y a partir de este 
momento puede seguir dos ciclos diferentes: 
4. Ciclo lítico: el ADN viral “maneja” la maquinaria de síntesis de la célula para sintetizar las proteínas víricas y copiar el 
ADN viral. Cuando hay suficiente cantidad de estas moléculas, se produce el ensamblaje (se “arman” los virus), la 
célula se rompe (lisa) y los nuevos virus se liberan al medio, produciendo la muerte de la célula. 
5. Ciclo lisogénico: ADN del virus queda integrado en el ADN de la bacteria. Los genes virales se replican junto al ADN de 
la bacteria. El virus queda en forma de profago, que ante determinados estímulos, desencadena un ciclo lítico, 
destruyendo la célula hospedadora. 
Los viroides son moléculas de ARN circular desnudo que se encuentra en las plantas. El PSTV, que causa la enfermedad 
tubérculo fusiforme en la papa, provoca que la papa infectada forme tubérculos alargados y deformes. 
Luego está el nivel celular,una célula es un agregado de moléculas, macromoléculas, y macromoléculas complejas o 
estructuras subcelulares (organelas). En este nivel se habla de organismos ya que los organismos más simples son 
unicelulares. Le siguen los niveles de tejidos, órganos, sistemas de órganos que forman individuos complejos. 
CLASIFICACIÓN DE LOS SERES VIVOS 
REINO 
TIPO DE 
CÉLULA 
NUTRICIÓN NIVEL DE ORGANIZACIÓN EJEMPLOS 
MONERA procariota Autótrofos/heterótrofos Celular Cianofíceas 
PROTISTA eucariota Autótrofos/heterótrofos Celular Protozoos 
HONGOS eucariota Heterótrofos Celular y tisular Moho 
VEGETALES eucariota Autótrofos Sistema de órganos Plantas 
ANIMALES eucariota Heterótrofos 
Desde tisular a sistema de 
órganos 
Medusa/humanos 
 
MICROSCOPÍA: El límite de resolución es la menor distancia entre 2 puntos que puede diferenciar un sistema ocular, siendo 
esta medida en el humano de 0.2mm. 
• MICROSCOPIO ÓPTICO: estructura mecánica con sistema de entes y una fuente luminosa. Tiene 3 tipos de lentes: 
condensador, objetivo y ocular. Por el primero pasa un haz de luz que incide sobre el objeto a estudiar; el 
objetivo aumenta la imagen de la pieza proyectándola por el ocular, que aumenta aún más esa imagen y la 
proyecta sobre el ojo de la persona (por ejemplo, una célula). 
• MIROSCOPIO ELECTRÓNICO: se utiliza para el estudio de estructuras muy pequeñas u organoides enteros aislados 
(por ejemplo, virus). Hay 2 tipos: 
• De transmisión: utiliza un haz de luz de electrones para visualizar un objeto y es capaz de aumentarlo hasta un millón 
de veces. 
• De barrido: la pieza a estudiar es barrida por un rayo continuo de partículas, tiene una resolución de 10nm y permite 
tener imágenes tridimensionales. 
CÉLULA PROCARIONTE 
• Papel fundamental como descomponedores y fijan nitrógeno atmosférico 
• Mesosomas: ancla moléculas de ADN, asegurando que cuando se divida, se reparta el genoma. 
• Cápsula 
• Pared celular: es porosa y permite el paso de sustancias 
• Membrana plasmática 
• Nucleoide (ADN) 
• Citoplasma: casi homogéneo 
• Ribosomas: síntesis de proteínas 
• Microcápsulas 
• Pili/flagelos: desplazamiento, formados por membranas de flagelina 
Las nuevas condiciones atmosféricas permitieron el desarrollo de nuevas formas de vida, las CÉLULAS EUCARIOTAS, que 
poseen células con núcleo verdadero rodeado por una doble membrana con varias moléculas de ADN. Posee un sistema de 
endomembranas que forma una compartimentalización interna que separa sus funciones en sitios diferenciados aumentando 
su eficiencia en la captación y transformación de materia y energía. La membrana externa se retícula con una organela, 
formando el retículo endoplasmático rugoso, y participa en la síntesis de proteínas de Golgi. La evolución de la célula fue de la 
siguiente manera: primero apareció la célula procariota ancestral (con ADN suelto, citoplasma y membrana), luego fue 
evolucionando y diferenciando cada vez más sus parte internas (núcleo, retículo endoplasmático, envoltura nuclear interna y 
externa) hasta llegar a la célula procariota aeróbica, la cual dio dos nuevas formas: la célula eucariota aeróbica (con 
mitocondrias, encargadas de la respiración celular) y la célula eucariota autótrofa (con cloroplastos). 
 
 
CÉLULA EUCARIOTA 
• Membrana Plasmática: complejo formado por lípidos, proteínas e hidratos de carbono; es semilíquida y semi 
permeable. Contiene el material celular, limita la célula y la comunica con su entorno. 
• Citoplasma: contenido celular eterno al núcleo; es un gel (semilíquido) donde está el citoesqueleto, las organelas 
y el sistema de endomembranas o membranas internas. En él se realizan gran parte de las reacciones metabólicas 
de las células. 
• Núcleo: en él está el ADN, está protegido por una doble membrana, la envoltura nuclear, que tiene poros ara 
comunicarlos con el citoplasma. El ADN es lineal y se asocia a proteínas básicas (histonas). En el núcleo hay un 
nucléolo, que es donde se sintetiza el ARN y forma ribosomas. 
• Organelas: 
• Mitocondrias: sitio en el cual se lleva a cabo la respiración celular, es decir la oxidación de compuestos orgánicos para 
obtener energía. 
• Cloroplastos: se encuentran en los organismos pertenecientes al reino vegetal, se encargan de la fotosíntesis, que es 
la síntesis de moléculas inorgánicas (CO2, H2O) en presencia de luz. Convierten la energía lumínica en energía química 
útil para la célula, y están presentes en células eucariotas autótrofas. 
• Lisosomas: encargadas de la digestión intracelular, que es la degradación de compuestos que ingresan en la célula o 
de componentes celulares a través de enzimas hidrolíticas. 
• Peroxisomas: oxidación de peróxidos producto del metabolismo celular (por ejemplo, agua oxigenada (un oxígeno 
más que la normal)) 
• Glioxisomas: transforman lípidos (almacenados en semillas) o glúcidos para la germinación. 
• Vacuolas: almacenan temporalmente nutrientes o productos de desecho, y transporte de moléculas. 
• Sistema Vacuolar Citoplasmático: sistema de membranas que forman canales en el citoplasma. Está compuesto 
por el REG, el REL, Golgi, y la envoltura nuclear, todos ellos conectados estructural y funcionalmente. 
• Envoltura nuclear: doble bicapa con poros y es discontinua. 
• RER: tiene ribosomas, sintetiza proteínas deportación, de membrana y enzimas hidrolíticas. Además, transporta 
sustancias hidrolíticas. 
• REL: sintetiza lípidos y participa en los procesos de detoxificación celular, eliminando organismos compuestos tóxicos. 
Almacena calcio y transporta proteínas sintetizadas. 
• Sistema de Golgi: sitio de formación de lisosomas, empaqueta y distribuye los productos del REG (RER) y REL. 
• Las células animales no poseen pared celular, a diferencia de las vegetales que sí poseen, y está formada por 
celulosa. Ambas poseen vacuolas, animales muy chicas y vegetales una y muy grande. Las células animales 
poseen centriolos, las vegetales no porque no se reproducen mediante reproducción sexual. 
CÉLULA VEGETAL CÉLULA ANIMAL 
- Núcleo 
- Nucléolo 
- Poros 
nucleares 
- RER 
- REL 
- Citoesqueleto 
-
 Peroxiso
mas 
- Lisosomas 
- Golgi 
-
 Mitocon
drias 
- Vacuola 
- Ribosomas 
- Membrana 
plasmática 
- Citoplasma 
-
 Cloropla
stos 
- Pared 
celular 
- Núcleo 
- Nucléolo 
- Poros 
nucleares 
- RER 
- REL 
-
 Citoesque
leto 
- Peroxisomas 
- Lisosomas 
- Golgi 
-
 Mitocond
rias 
- Vacuolas 
-
 Riboso
mas 
-
 Membr
ana 
plasmátic
a 
-
 Citopla
sma 
- Centriolos 
 
 
 
 
 
UNIDAD 2: BIOMOLÉCULAS 
AGUA: 
• Constituye el 70% del peso de los seres vivos. 
• Está en el interior y exterior de las células. 
• Es el medio en el cual ocurren las reacciones químicas responsables del mantenimiento de la vida. 
• Si bien es una molécula neutra, es una molécula polar (posee un polo positivo y otro negativo), lo que lleva a que 
las moléculas de agua tiendan a acercarse entre sí. 
• Se unen entre ellas a través de uniones “puentes de hidrógeno” que, si bien son débiles, se mantienen mediante 
una fuerte atracción entre las moléculas. 
• Los enlaces puente de hidrógeno permiten mantener las moléculas de agua conexionadas en el estado líquido, 
sólido o gaseoso, según la temperatura. 
• Cuando una molécula forma puentes de hidrogeno en el agua, se disuelve en ella. 
• Tanto sustancias iónicas como polares establecen puentes de hidrogeno con las moléculas de agua y son solubles 
(hidrofílicas). Las moléculas orgánicas no polares no pueden establecer puentes hidrógenos por lo que no son 
solubles (hidrofóbicas). 
• Anfipáticas: el grupo carboxilo forma puentes hidrogeno con agua. La colahidrocarbonada no polar se agrega con 
otras colas hidrofóbicas. 
 
MACROMOLÉCULAS BIOLÓGICAS: Los seres vivos están formados por moléculas orgánicas de 4 tipos: hidratos de carbono 
(CHO), proteínas (CHONS), lípidos (CHO) y ácidos nucleicos (CHONP). Cada molécula orgánica tiene propiedades articular 
debido a grupos funcionales (conjunto de átomos presente en la cadena carbonada de un compuesto). Si una molécula 
presenta uno de los grupos será soluble o al menos una parte de ella; el único insoluble en agua es el grupo metilo. En el caso 
de las sales, como el cloruro de sodio (NaCl), al sumergirse en agua se disocian en 2 iones (catión Na+, anión Cl-), se separan y 
son aglomerados por las moléculas de agua. 
MONÓMEROS Y POLÍMEROS: Un polímero es una macromolécula formada por varias moléculas del mismo tipo, los 
monómeros, que, unidos unos tras otros, forman una cadena. Las uniones entre los monómeros pueden romperse quedando 
las moléculas libres, mecanismo llamado hidrólisis (ruptura por el agua). 
 
 
HIDRATOS DE CARBONO 
• Están compuestos por C, H y O. 
• Son polialcoholes (muchos grupos oxidrilo), por lo tanto, son solubles en agua. 
• Contienen grupo aldehído, o grupo cetona. 
• Sus monómeros son monosacáridos y los polímeros, polisacárido. 
• Es la fuente de energía principal de corto plazo, la célula lo transforma en glucosa y el resto lo transforma y 
almacena el ligando como glucógeno. 
• Tiene función estructural en la pared celular (célula vegetal). 
• Clasificación: 
• Monosacáridos: solubles al agua; son los más simples, tienen de 3 a 7 átomos de carbono; aquellos que presentan un 
grupo aldehído se denominan aldosas y aquellas que presentan un grupo cetona se denominan cetosas. La cantidad 
de átomos de carbono se denomina con el sufijo -osas (triosas-3, tetraosas-4, pentosas-5, hexosas-6, heptosas-7). 
Dentro de las hexosas se encuentran la fructosa, glucosa y galactosa, cuya función es suministrar energía a los seres 
vivos, que puede utilizarse rápidamente; ingresan con el alimento y las células lo degradan. Dentro de las pentosas se 
encuentran la ribosa y desoxirribosa. 
• Oligosacáridos: entre 3 (trisacárido) y 10 monosacáridos, no son solubles al agua. La glucosa, fructuosa o galactosa 
pueden unirse entredós en unión covalentes; si se unen dos monosacáridos, dan origen a disacáridos, lo cuales son 
solubles al agua (esta unión se da por una reacción química llamada condensación y el tipo de enlace se llama 
glucosídico). La sacarosa es un disacárido que proviene de la caña de azúcar y de la remolacha (Glucosa + Fructuosa); 
la lactosa es un disacárido de los lácteos no grasos (Galactosa + Glucosa). Los oligosacáridos están también presentes 
en las membranas celulares unidos a proteínas o lípidos; son cadenas cortas ramificadas formadas distinto tipos de 
monosacáridos y participan en la comunicación entre ellas. Las células se comunican entre si liberando sustancias 
químicas en forma de mensajes y otras células lo captan a partir de células receptoras. 
• Polisacáridos: no son solubles al agua. Los seres vivos utilizamos monosacáridos, para degradarlos y obtener energía. 
Cuando dicho ser vivo posee más glucosas de los que necesita para obtener energía, los almacena para el futuro 
uniendo las moléculas entre si, formando polímeros. En las plantas es almidón, que está formado por dos polímeros, 
la amilosa (forma helicoidal, como si fuera un resorte, pero plano) y la amilopectina (forma ramificada, una especie de 
escalera en la que en cada escalón se le van agregando cada vez más glucosas), que se almacenan en unas estructuras 
celulares llamadas amiloplastos. En lo animales es el glucógeno (ramificado, pero no como la amilopectina, por tener 
más ramificaciones), que se almacena en el hígado (células hepáticas) y en los músculos. Ambos se forman de la 
molécula de glucosa. 
• Celulosa: está formado por glucosa y es lineal, pero sus uniones (entre monómeros) no son iguales, por lo que no 
tienen las mismas propiedades que la amilopectina. No es posible romper los enlaces de celulosa para su digestión 
para el hombre, si en animales como los herbívoros. La función de la celulosa es estructural, forma parte de las 
paredes celulares de las células vegetales, que le brindan protección y sostén a la misma. Es el polisacárido más 
abundante del planeta. 
• Quitina: es un polisacárido lineal, formado por el monómero N-acetil-glucosamina (glucosa modificada). Su función es 
estructural, le da resistencia a la pared celular de los hongos y constituye el exoesqueleto de crustáceos, moluscos e 
insectos. 
LÍPIDOS 
• Formados por C, H y O, y pueden ser insolubles en agua o anfipáticos y solubles en solventes orgánicos. 
• Funciones: influyen en la rigidez y fluidez de la membrana plasmática y organelas, son fuente de energía a 
mediano plazo, aislantes contra el frío, y forman parte de la estructura de algunas vitaminas y hormonas 
• ÁCIDOS GRASOS: tienen una cadena hidrocarbonada junto a un grupo carboxilo en su extremo, cuya longitud 
varía entre 14 y 22 carbonos unidos ente si mediante enlaces simples (saturados, sólidos a T ambiente) o 
dobles/triples (insaturados, líquidos a T ambiente). Los ácidos son anfipáticos porque el grupo carboxilo es polar y 
la cola carbonada es hidrofóbica (cuanto mayor sea, menos soluble será). Forman parte de moléculas de mayor 
tamaño como los fosfolípidos que forman parte de las membranas biológicas. En agua forman micelas que 
consiste en agruparse de tal modo que evitan que las colas hidrofóbicas estén en contacto con el agua mientras 
que las cabezas hidrofílicas las protegen poniéndose en contacto con el agua (superficie soluble, interior 
insoluble). 
 
Grupo fosfato 
 
• ACILGLICÉRIDOS: los triglicéridos son el conjunto de grasas y aceites formado por una molécula de glicerol (3 
carbonos con un oxhidrilo en cada uno) más 3 ácidos grasos. El triglicérido es sólido si los ácidos grasos son de 
cadena larga o con pocos enlaces dobles; de lo contrario serán líquidos. Los triglicéridos son lípidos que 
almacenan la energía de los ácidos grasos. Para ello, se hidrolizan los ácidos grasos del glicerol, y la célula los 
degrada para obtener la energía. Los acilglicéridos son las moléculas formadas por glicerol y ácidos grasos. El 
enlace por el que se unen los oxhidrilos del glicerol y el grupo carboxilo de los ácidos grasos se llama unión éster 
(reacción de condensación que genera moléculas de agua). Los acilglicéridos pueden ser mono, di, o triglicéridos 
según el número de ácidos grasos que posea. Son aceites los triglicéridos con ácidos grasos (predominan el doble 
enlace); son grasas los triglicéridos con ácidos grasos saturados. 
A.G. saturado(recto) 
 
A.G. no saturado 
 
FOSFOLÍPIDOS: formados por la unión de un glicerol a dos ácidos grasos y un ácido fosfórico, pueden unirse a una 
molécula polar (compuesto nitrogenado). Son moléculas anfipáticas porque el grupo fosfato es polar y en una solución 
acuosa miran hacia el agua, y los ácidos grasos (hidrofóbicos no polares) rechazan el agua. En agua, forman bicapas de 
fosfolípidos que pueden unirse por sus extremos y formar vesículas cerradas (forman parte de las membranas 
plasmáticas). 
• CERAS: macromoléculas formadas por alcoholes de gran número de carbonos, unidos a ácidos grasos de cadena 
larga. A temperatura ambiente son sólidas e insolubles en agua. 
• ESTEROIDES: presentan una estructura básica de 5 anillos carbonados llamada ciclopentanoperhidrofenonteno y 
difieren entre sí según los grupos de átomos que se unan a esa ella. No hay una función específica para los 
esteroides, cumplen diferentes funciones, pueden ser lípidos de membrana (colesterol, junto con los fosfolípidos 
en las membranas celulares de los animales); de hormonas, como la testosterona (masculina) y la progesterona 
(femenina); o de vitaminas (como la D). 
 
PROTEÍNAS 
• Macromoléculas más abundantesde las células, son el 50% del peso seco. 
• Funciones: 
• Estructural: dentro y fuera de las células uniéndolas entre sí (tejidos, colágeno, queratina, elastina, músculos, parte de 
la matriz ósea, tendones, etc.). 
• Enzimas: aceleran y regulan reacciones químicas, que consisten en fabricar y degradar moléculas. 
• Protectora: actúan como anticuerpos, reconociendo, uniéndose y destruyendo antígenos (los inactivan), como, por 
ejemplo, la inmunoglobulina. 
• Coagulación sanguínea: trombina y fibrinógeno. 
• Transporte de sustancias: hemoglobina transporta O2 y CO2 por la sangre; mioglobina transporta O2 en el tejido 
muscular; y la seroalbúmina transporta ácidos grasos en la sangre. 
• Bombas: permiten el intercambio de iones, aminoácidos, monosacáridos, agua; a través de la membrana. 
• Hormonal: actúan como mensajeros químicos a través de la sangre, como por ejemplo la insulina que da la señal para 
que la célula incorpore glucosa. 
• Contráctil: forman parte de las fibras musculares (la actina y miosina). 
• Toxicidad: algunas pueden ser toxinas para ciertas células de otros organismos (toxina colérica). 
 
 
• AMINOÁCIDOS: son los monómeros de las proteínas. Formados por un grupo amino, un grupo carboxilo, y una 
cadena carbonada, de la cual dependen los distintos aminoácidos que existen (“grupo R”). Los grupos carboxilos y 
amino son solubles en agua, mientras que el grupo R puede ser polar o no; esto genera que los aminoácidos sean 
polares o no polares (según si R es soluble en agua o no). 
• Las células sintetizan las proteínas en los ribosomas uniendo aminoácidos entre sí. Si estos provienen de los 
alimentos, se hidrolizan e el tubo digestivo y los aminoácidos libres van a la sangre y a las células (aminoácidos 
esenciales). 
• Existen 20 tipos de aminoácidos: 
• Aminoácidos hidrofóbicos o no polares: grupos R no polares (leucina). 
• Aminoácidos polares: 
• sin carga: grupos funcionales polares en sus grupos R (tirosina). 
• con carga: presentan en sus grupos R cargas netas positivas o negativas (arginina). 
• Unión entre aminoácidos: para formar polímeros, los aminoácidos se unen entre sí a través de un enlace llamado 
unión peptídica mediante la unión de un grupo amino de un aminoácido y el grupo carboxilo de otro. La reacción 
química de la que resulta esto es la condensación, porque se forma una molécula de agua. Una cadena de 
aminoácidos puede ser dipéptido (2 aminoácidos), tripéptido (3 aminoácidos), tetrapéptido (4 aminoácidos); los de 
mayor longitud son los polipéptidos. 
• ESTRUCTURA DE LAS PROTEÍNAS: las cadenas polipeptídicas se pliegan y adquieren una estructura tridimensional 
que se denomina conformación (ordenamiento espacial de los átomos que la conforman), según estas las 
proteínas se dividen en fibrosas (forman estructuras fibrosas y resistentes), o globulares (adquieren forma 
globular). Según la manera en que se pliegan hay distintos tipos de estructuras con distintas funciones: 
• Estructura primaria: es el orden o secuencia de aminoácidos que la componen. Está formado por una parte que se 
repite regularmente (esqueleto carbonado) y los restos laterales de los aminoácidos interaccionan haciendo que el 
polipéptido se pliegue formando una estructura ordenada y estable. 
• Estructura secundaria: los átomos pueden establecer uniones puentes de hidrogeno entre si, generando el 
plegamiento de la molécula. El plegamiento puede ser de alfa-hélice o beta-lamina (hoja plegada). En una misma 
cadena puede haber sectores con un tipo de plegamiento, otros con otro y otros con ninguno (disposición al azar). 
• Estructura terciaria: cuando las cadenas polipeptídicas esta plegada (estructura secundaria), los grupos R delos 
aminoácidos interactúan entre sí y con el medio, los cuales interactúan mediante uniones puente hidrogeno, puente 
disulfuro (cuando los aminoácidos tienen átomos de azufre en su cadena R) y por atracción/repulsión entre as cargas 
de los grupos R, evitando que la cadena sea lineal. 
• Estructura cuaternaria: en las proteínas compuestas por más de una cadena polipeptídica se asocian como 
estructuras terciarias o subunidades. estas pueden ser iguales, similar o distintas y sus uniones son débiles como 
interacciones hidrofóbicas, puentes de hidrogeno, salinas y Van der Wals 
• El plegamiento de las cadenas depende de la última instancia de su estructura primaria, porque es una 
consecuencia de la interacción entre los grupos R y dan origen a distintos plegamientos, distintas conformaciones 
y distintas funciones. 
• La función de la proteína depende de su plegamiento. Para que la proteína funcione normalmente debe tener 
determinada forma, si esta se altera puede ser que funcione defectuosamente, que funcione mejor o que no 
funcione (esto se debe a la alteración en la secuencia de aminoácidos). La secuencia de aminoácidos depende de 
la información genética y los cambios en ella (mutaciones) provocaran cambios en las proteínas. 
• Desnaturalización e hidrólisis: Una proteína se desnaturaliza cuando cambia su conformación por algún factor 
externo (temperatura, cambio en el pH, agentes químicos), que causan que se rompan las interacciones y se 
cambie la forma de la proteína (sin perder la estructura primaria). Si la proteína esta desnaturalizada no tendrá 
actividad biológica. La hidrólisis es la ruptura de las uniones peptídicas, por lo tanto, se pierde la estructura 
primaria. 
• MIOGLOBINA: se ubica en los músculos, glóbulos conjugados; estructura terciaria, mayor afinidad al O2, no es 
alostérica. Toma el O2 en sangre y lo almacena en los músculos; no deja que el O2 se reduzca y lo libera de 
acuerdo con las necesidades de los tejidos. 
• HEMOGLOBINA: estructura cuaternaria, está dentro de los glóbulos rojos; proteína globular conjugada, su 
afinidad por el O2 se ve afectada por alteraciones del medio (es alostérica). Transporta gases (O2 de pulmones a 
tejidos y el CO2 de tejidos a pulmones), regula el pH en sangre. 
ÁCIDOS NUCLÉICOS 
• Moléculas formadas por C, H, O, N y P. 
• Son polímeros monómeros son los nucleótidos. Existen dos tipos, el ADN (ácido desoxirribonucleico) y el ARN 
(ácido ribonucleico). 
• El ADN se encuentra en el núcleo de las células eucariotas y libre en las células procariotas. Se encarga de 
almacenar la información genética que determina las características de un individuo y será transmitida de 
generación en generación. 
• El ARN posee tres variedades que cumplen funciones diferentes dentro de la síntesis de proteínas llevada a cabo 
en los ribosomas. Estos son el ARNm (mensajero), ARNr (ribosomal) y ARNt (de transferencia). 
• Nucleótidos: es una molécula formada por una pentosa (azúcar de 5 carbonos), un grupo fosfato y una base 
nitrogenada. 
• Tanto el ADN como el ARN están formados por pentosas, azúcar de 5 carbonos, un grupo fosfato y una base 
nitrogenada. La diferencia está en que la pentosa del ADN es la desoxirribosa y la pentosa del ARN es la 
ribosa. 
• Existen 5 bases nitrogenadas que se agrupan en dos grupos según la cantidad de anillos que estas poseen. Están las 
bases púricas (formadas por dos anillos) que son la adenina (A) y la guanina (G); y las bases pirimídicas (formadas por 
un anillo) que son la tiamina (T), la citosina (C) y el uracilo (U). El ADN contiene A, T, G, C y el ARN contiene A, U, G, C. 
• Nomenclatura y función de los nucleótidos: 
o Cuando están libres pueden tener más de un grupo fosfato. Si presentan una adenina y un 
fosfato es adenosín mono fosfato (AMP); si tiene 2 fosfatos es adenosín di fosfato (ADP); y si 
tiene tres fosfatos es adenosín tri fosfato (ATP). Es igual para todos los nucleótidos. Solo 
cambia el nombre dela base (si es guanina, es guanosín…). Si solo hay un azúcar unido a 
lavase nitrogenada (sin fosfatos), la molécula se denomina nucleósido. 
o Dentro de sus funciones se encuentran: polimerizarse para formar los ácidos nucleicos; 
transportar energía dentro de lacélula y suministrarla donde la requiera (intermediarios 
energéticos). Esto último es posible ya que las uniones entre los fosfatos tienen elevada 
energía química y, cuando se hidrolizan, la liberan, para luego las células utilizarla para 
sintetizar las moléculas orgánicas, desplazarse, etc. (esta energía es suministrada por el ATP 
y a veces el GTP) 
• Unión entre nucleótidos: se unen a través de sus grupos fosfato del carbono 5 de la pentosa de un nucleótido en 
el oxígeno del carbono 3 de la pentosa de otro. El enlace covalente entre el fosfato con ambas pentosas es 
fosfodiéster. Uno de los extremos de la cadena tiene el fosfato del C5’ libre y el otro extremo tiene el oxhidrilo de 
C3’ libre. Su secuencia de bases se escribe es 5’ →3’. 
 
 
• ADN: está formada por dobles hebras/cadenas/esqueleto, se dice que es una doble hélice porque estas adoptan 
una estructura helicoidal. Estas hebras se unen entre sí a través de sus bases nitrogenadas mediante enlaces 
puente de hidrógeno. La A se une con la T y la C se une con la G (en el interior). El exterior se forma de azucares y 
grupos fosfatos. Son antiparalelas entre sí, lo que quiere decir que una corre en sentido 5’ → 3’ y la otra en 
sentido 3’ → 5’. 
 
 
• ARN: tiene una sola cadena-hélice uracilo en lugar de timina. La complejidad de sus bases es como el ADN, solo 
que la adenina se une al uracilo. Los tipos de ARN son: 
• ARNm: porta la información (del ADN) para la síntesis de proteínas. 
• ARNr: principal componente de los ribosomas, que son el lugar donde ocurre la síntesis proteica. 
• ARNt: transporta aminoácidos al ribosoma para la formar el enlace peptídico. 
 
ASOCIACIONES DE BIOMOLÉCULAS: Complejos Macromoleculares 
GLUCOPROTEÍNAS Y GLUCOLÍPIDOS 
• Complejos formados por la unión covalente de oligosacáridos a una proteína o a un lípido. 
• Están presentes en la membrana de las células, donde los oligosacáridos (los cuales suelen participar en 
reacciones de reconocimiento y comunicación celular) miran hacia el exterior. 
• Las células se comunican entre sí liberando sustancias químicas, (que pueden viajar por la sangre o difundir por el 
espacio extracelular) y luego ser reconocidas por otras células. Según cual sea esta señal, la célula receptora de la 
señal adoptará una determinada respuesta. Las moléculas encargadas de este reconocimiento se denominan 
receptores, y contienen oligosacáridos que participan en dicha función. 
LIPOPROTEÍNAS 
• Complejos formados por lípidos y proteínas. 
• Estos complejos transportan lípidos por la sangre hacia las células de un órgano a otro. 
• Por ejemplo: lipoproteínas LDL y HDL que transportan colesterol, que se obtiene con la dieta y se fabrica en las 
células del hígado, que se exporta y distribuye a las células del cuerpo por la LDL. La HDL, en cambio, llevan 
exceso de colesterol al hígado para degradarlo y excretarlo; el hígado nivela y controla el nivel de colesterol en 
sangre a través de la captación de LDL en receptores de las membranas celulares. Si estas no funcionan, el hígado 
sigue sintetizando y exportando colesterol y comienzan a bloqueárselas arterias. 
RIBOSOMAS 
• Son estructuras citoplasmáticas no rodeadas por membranas, donde se produce la síntesis de proteínas (tanto en 
células eucariontes como procariontes) 
• Los ribosomas eucariontes son más grandes que los procariontes; éstas 2 células también difieren en la cantidad y 
tipo de ARN y proteínas. 
• Presentan subunidades, una mayor y una menor, formadas por varias cadenas polipeptídicas y moléculas de ARNr 
ensambladas. 
 
ENERGÍA Y METABOLISMO: 
El metabolismo es el conjunto de transformaciones químicas y energéticas, que posibilita la vida. Esto ocurre dentro de las 
células de manera ordenada posibilitando la elaboración de moléculas y estructuras. Se necesita un flujo constante de energía 
a través de los seres vivos y de la biosfera, porque su energía lumínica es transformada en química por organismos 
productores de la cual parte de ella, es transferida a organismos consumidores y degradadores. La energía es la capacidad de 
realizar trabajo o producir un cambio; puede estar almacenada o liberada en forma de calor y ser transformada una en otra. 
Hay distintos tipos: 
• Energía cinética: Es la que posee un cuerpo por estar en movimiento 
• Energía potencial: Es la capacidad que posee un cuerpo para realizar un cambio o trabajo según la posición en 
que se encuentre. 
• Energía eléctrica: Es la energía almacenada en cuerpos con carga eléctrica y liberada a través del flujo de 
electrones (corriente eléctrica). 
• Energía sonora: Es la energía asociada a la propagación del sonido por de ondas mecánicas. 
• Energía Lumínica: Es la energía radiante que se manifiesta en forma de luz (de fuentes naturales o artificiales) que 
se propaga por medio de ondas electromagnéticas. 
La termodinámica es la ciencia que analiza las transformaciones de la energía. 
• Primera ley de la Termodinámica: “La energía puede convertirse de una forma a otra, pero no puede ser creada ni 
destruida”. En cualquier sistema la energía total permanece constante a pesar de las transformaciones que 
ocurran. Es decir, no se crea ni se destruye energía, sino que se transforma. En una reacción química, la energía 
de los productos de la reacción, más la energía liberada de la reacción misma es igual a la energía inicial de las 
sustancias que reaccionan. 
• Segunda ley de la Termodinámica: “En toda conversión energética, la energía potencial final siempre es menor 
que la energía potencial inicial, siempre y cuando no se quite ni suministre energía extra al sistema que se 
estudia.” No es posible transformar en trabajo útil toda la energía involucrada en un cambio, porque parte de esa 
energía pasa al ambiente como calor y es irrecuperable para poder realizar un trabajo. Todo cambio espontáneo 
ocurre simultáneamente con un aumento del desorden molecular y se disipa calor. Este desorden se denomina 
entropía o energía inútil. 
La segunda ley no se contradice con la primera, ya que la energía total del universo no disminuye con el tiempo. Lo que ocurre 
es que la energía se convierte en un movimiento molecular desordenado aleatorio. 
Las reacciones metabólicas pueden ser: 
• Catabólicas (oxidación, pierden e-): reacciones de degradación de moléculas complejas (HdeC, prot, líp) en otras 
más simples (como el CO2). Estas moléculas complejas poseen mucha energía que es liberada con su degradación 
por esto se las llama exergónicas. 
• Anabólicas (reducción, ganan e-): reacciones de síntesis o formación de moléculas más complejas (HdeC, prot, líp) 
a partir de otras más simples (como el CO2). Estas reacciones requieren energía, por lo cual se 
denominan endergónicas 
ACOPLAMIENTO ENERGÉTICO: las reacciones anabólicas y catabólicas son interdependientes o complementarias: las 
anabólicas se realizan con parte de la energía liberada por las catabólicas, es decir, están acopladas mediante de una molécula 
intermediaria: el ATP (adenosín-tri-fosfato). 
Molécula de ATP 
 
El ATP toma la energía de las reacciones catabólicas que se desprende, la transporta en sus enlaces de alta energía y las pone 
en las reacciones anabólicas, desprendiéndose de un grupo fosfato. Se transforma, entonces, en ADP (adenosín-di-fosfato) 
más un fosfato inorgánico liberado. 
 
ENERGÍA EN LAS REACCIONES QUÍMICAS 
Las reacciones ocurren junto a la transferencia de calor hacia el entorno. Las reacciones en que se disipa calor al ambiente se 
llaman exotérmicas y son equivalentes a las ya mencionadas reacciones exergónicas. Aquellas en las que hay absorción de 
calor, se denominan endotérmicas y equivalen a las endergónicas. Cada reacción química ocurre a una determinada velocidad 
en una cierta unidad de tiempo. Para iniciar una reacción, es necesaria una cierta absorción de energía por parte de los 
reactivos, que se llama energía de activación (Ea). Modificando estaenergía en seres inorgánicos, puede acelerar la reacción. 
En el caso de las sustancias reaccionantes, se denomina Energía Inicial (Ei), y, en el caso de los productos, Energía Final (Ef). En 
las reacciones exergónicas se libera energía, por lo que la Ef del sistema es menor que la Ei. En las reacciones endergónicas 
hay un suministro de energía y, por lo tanto, la Ef es mayor que la Ei. 
 
 
ENZIMAS 
En las células, las reacciones químicas son muy rápidas; ocurren en minutos o en segundos, a temperaturas que no suelen 
sobrepasar los 45 ºC. Todo esto es posible debido a la presencia de las enzimas: moléculas proteicas que catalizan (aceleran) 
las reacciones bioquímicas y regulan el metabolismo. Estas reducen la energía de activación requerida para modificar los 
enlaces de las moléculas reaccionantes. 
 
Reacción enzimática: 
• En las reacciones anabólicas las enzimas pueden reconocer más de un sustrato específico a través de su sitio 
activo, catalizando la formación de un producto más complejo que los reactivos 
• Las reacciones catabólicas son catalizadas por enzimas hidrolíticas que actúan incorporando una molécula de 
agua que rompe un enlace químico, obteniendo como producto moléculas más simples. 
• Los sitios activos se localizan sobre la superficie de las moléculas enzimáticas. La forma en que se unen enzima y 
sustrato se explica mediante dos modelos: el Modelo Llave-Cerradura, que propone que los sitios activos de las 
enzimas son como cerraduras de estructura fija, mientras que los sustratos son como llaves que encajan 
perfectamente en ellas (total complementariedad entre el sitio activo de la enzima y el sustrato); y el Modelo de 
Encaje Inducido, que propone que cuando un sustrato se combina con una enzima, pueden inducirse cambios en 
la forma de la molécula enzimática (ya que los sitios activos no serían rígidos como una cerradura) para que estos 
se puedan unirse. 
 
Cinética enzimática(actividad): 
• Se caracteriza por la saturación del sustrato. 
• La velocidad inicial de la reacción es casi proporcional a la concentración del sustrato (zona 1 de la curva). 
• A medida que la concentración de sustrato aumenta, la velocidad inicial de la reacción disminuye y deja de ser 
proporcional a la concentración de sustrato (zona 2). 
• Con un aumento posterior de la concentración del sustrato, la velocidad de la reacción llega a ser esencialmente 
independiente de la concentración de sustrato y se aproxima a una velocidad constante (zona 3). 
• El valor conocido KM representa la concentración de sustrato correspondiente a la mitad de la velocidad máxima 
de la enzima. El KM indica el grado de afinidad de ésta por su sustrato; en otras palabras, qué tanto sustrato 
necesita una enzima para actuar a una velocidad media. 
 
Sistemas multienzimáticos: 
• Las enzimas son las unidades catalíticas del metabolismo. Actúan de modo secuencial, catalizando reacciones 
consecutivas conectadas por intermediarios comunes, de modo que, el producto de la primera enzima es el 
sustrato del siguiente. 
• Los sistemas enzimáticos pueden comprender desde 2 hasta 20 o más enzimas actuando en una secuencia. Estas 
reacciones implican transferencia enzimática de átomos de hidrógeno, de moléculas de agua o de unidades 
funcionales específicas como grupos amino, acetilo, fosfato, metilo, carboxilo, etc. 
• En sistemas sencillos, las enzimas individuales están disueltas en el citoplasma como moléculas independientes, 
no asociadas unas con otras. Los intermediarios son moléculas menores que las de enzimas y poseen velocidades 
de difusión elevadas, se difunden muy rápidamente desde una molécula enzimática a la siguiente. 
Modificaciones de la actividad enzimática: 
• Las enzimas actúan mejor cuando se encuentran en llamadas condiciones óptimas, como ser una temperatura 
apropiada, determinado pH (grado de acidez de una solución acuosa), una cierta concentración de sales, etc. 
Cualquier variación de esas condiciones afecta la actividad enzimática. 
• Efecto de la temperatura: las enzimas suelen desactivarse a altas temperaturas, y tienen muy poca o nula 
actividad cuando las temperaturas son muy bajas. Las velocidades de reacción tienden a incrementarse cuando se 
eleva la temperatura, dentro de ciertos límites, ya que por encima de los 50 o 60 ºC la actividad se pierde. Sin 
embargo, ciertas bacterias pueden soportar 100 ºC. 
• Efecto del pH: Las enzimas poseen un pH característico al cual su actividad es máxima, y si se modifica, afecta a la 
actividad enzimática. El pH óptimo de una enzima no es necesariamente el pH de su entorno intracelular. Esto 
sugiere que la relación pH-actividad normal puede constituir un factor de control intracelular de su actividad. 
 
Inhibición enzimática: 
• Es la reducción parcial o total de la capacidad catalítica causada por agentes químicos llamados inhibidores. 
• Inhibición competitiva: El inhibidor (semejante a la del sustrato) se acoplan al sitio activo, pero como no puede 
sustituir por completo al sustrato la enzima no puede catalizar su transformación a productos de reacción. El 
inhibidor competitivo puede ocupar el sitio activo por un tiempo o producir una unión permanente (puede 
evitarse por un simple aumento en la concentración del sustrato). 
 
Inhibición no competitiva: el inhibidor se fija a la enzima en un sitio que no es el activo y cancelan la actividad de la 
enzima al modificar su conformación. Estos pueden desactivar permanentemente o destruir la enzima. Muchos venenos son 
inhibidores irreversibles. Por ejemplo, la enzima citocromo oxidasa, una de las enzimas del sistema de transporte de 
electrones del mecanismo de respiración celular, es muy susceptible al cianuro, de modo que, si ingresa al organismo, este la 
puede inhibir irreversiblemente. Las enzimas por sí mismas pueden inhibir si se introducen en un compartimiento inadecuado 
del cuerpo. 
 
Efecto alostérico: Puede ocurrir una inhibición, inhibición feed-back o por producto final, que ocurre cuando un producto 
final se coloca con una enzima situada al comienzo de la secuencia o muy próxima a él. La enzima es inhibida se llama enzima 
alostérica. Poseen, además del sitio activo, el sitio alostérico al que se enlaza de modo reversible y no covalente una efector o 
modulador. Algunos moduladores, son inhibidores, y por ello se les denomina moduladores inhibidores o negativos. Otras 
enzimas alostéricas pueden tener moduladores positivos o estimuladores. Estas enzimas pueden tener más de un modulador, 
que se une a un centro específico (son polivalentes). 
Los moduladores modifican la afinidad de la enzima por el sustrato, y por lo tanto la velocidad de la reacción, con enzimas 
alostéricas se pueden regular las velocidades de las reacciones metabólicas de acuerdo con las necesidades de las células. 
Coenzimas y Cofactores: La actividad de algunas enzimas depende de otros componentes no proteicos para ejercer su 
función. Éstos pueden ser cofactores, si son iones metálicos, como el Mg++, Mn++, Fe++, o ser una molécula orgánica, llamada 
coenzima. El cofactor metálico puede actuar como puente entre sustrato y la enzima, o como agente estabilizante de la 
conformación de la proteína enzimática en su forma catalíticamente activa. En algunas enzimas, el componente metálico 
posee una actividad catalítica primaria, incrementada a su vez por la proteína enzimática. Las coenzimas suelen tener, como 
parte de su estructura, una molécula de alguna de las vitaminas; que son vitales para la función de todas las células, y deben 
figurar en la alimentación de los heterótrofos. Son intermediarios en el transporte de grupos funcionales, de átomos 
específicos o de electrones transferidos durante la reacción enzimática. Los nucleótidos como el NAD y el FAD actúan como 
coenzimas en la respiración celular y la fotosíntesis; o la Vitamina C, que actúa como coenzima durante la síntesis del 
colágeno. 
Enzimas yCompartimentalización Celular: En las células eucariontes, las distintas enzimas y los sistemas 
multienzimáticos están localizados en distintos compartimientos, organelas o estructuras celulares. La compartimentalización 
de los sistemas enzimáticos permite también el control y la integración de algunas actividades intracelulares. 
 
 
 
BIOMEMBRANAS 
• La membrana plasmática es el límite entre la célula y su entorno, controla el ingreso y salida de sustancias. 
Presenta permeabilidad selectiva, esto es, facilita el pasaje de ciertas sustancias y bloquea el paso de otras. 
• Las “membranas biológicas” incluyen tanto a la membrana plasmática de toda célula, como al sistema de 
endomembranas de las células eucariotas. El metabolismo celular requiere precisión en el accionar coordinado de 
todas las enzimas que en él intervienen. Para que esta organización funcione correctamente, las enzimas deben 
estar presentes en el momento preciso y en el sitio adecuado. Las membranas proveen la base estructural para 
este ordenamiento metabólico. 
• El “modelo del mosaico fluido” (postulado por Singer y Nicolson) se basa en bicapas de lípidos como la base de la 
membrana, las proteínas pueden penetrar hacia el interior e incluso atravesar por completo la bicapa, y pueden 
presentar diversos glúcidos asociados. Además, destaca que las membranas son fluidas, dinámicas y sus 
componentes son móviles con disposición asimétrica. 
 
Generalidades de la membrana: 
• Son estructuras lipoproteicas (proteínas y lípidos que se unen por interacciones débiles) y sus componentes se 
integran por una estructura laminar. 
• Presenta permeabilidad selectiva: regula la composición del espacio que rodea. 
• Las membranas plasmáticas de las células eucariontes tienen también un papel en el reconocimiento célula-
célula, en el mantenimiento de la forma celular, en la locomoción celular, y es el punto de acción de muchas 
hormonas y reguladores metabólicos. 
 
Funciones de la membrana: 
• Barreras selectivamente permeables: impiden el pasaje libre de materiales entre compartimientos celulares, en el 
caso de las endomembranas, o entre la célula y el medio que la rodea, en el caso de la membrana plasmática. A 
su vez median la comunicación entre espacios. 
• Compartimentalización: la membrana plasmática delimita el contenido de la célula, en cambio la membrana 
nuclear y citoplasmáticas forman compartimientos dentro de la célula, donde ocurren reacciones químicas 
específicas. 
• Transporte de partículas: transportan sustancias de un lado al otro de las mismas (acumular nutrientes, azúcares 
y aminoácidos); separa iones y establece gradientes iónicos. 
• Interacción entre células: media las interacciones entre las células y permite a las células reconocerse entre sí. 
• Soporte de enzimas: la estructura de las membranas permite mantener ordenados los sistemas multienzimáticos, 
aumentando la eficiencia de las reacciones. 
• Anclaje del citoesqueleto: los componentes del mismo se unen a la membrana, participando del mantenimiento 
de la forma y la motilidad celular. 
 
Composición de las biomembranas: 
• Lípidos de membrana: poseen una función estructural, son anfipáticas, tienen un extremo hidrofílico o polar y 
otro hidrofóbico o no polar, y en medio acuoso forman las bicapas. Tienen 3 componentes: 
• FOSFOLÍPIDOS: tienen una cabeza polar constituida por un grupo fosfato unido un residuo de colina, etanolamina, 
serina o inositol y a un glicerol. Unida a esta cabeza, hay dos colas hidrofóbicas, que son, cada una de ellas, un ácido 
graso. Las bicapas pueden autoensamblarse como liposomas. La bicapa lipídica, al tener el interior hidrocarbonado, 
impide el pasaje de la mayoría de las moléculas biológicas polares (azúcares, aminoácidos, proteínas, ácidos 
nucleicos) y de iones. Los lípidos de la bicapa tienen la fluidez de un aceite, permitiendo a los fosfolípidos cambiar sus 
sitios dentro de una monocapa (difusión lateral) o intercambio de moléculas lipídicas entre monocapas opuestas 
("flip-flop" o difusión transversal). Si las cadenas hidrocarbonadas son cortas, menor es la interacción entre ellas, y 
mayor número de dobles enlaces, lo que le da mayor fluidez de la membrana y menor temperatura de fusión. En 
cambio, si son más largas, menor es la fluidez y mayor es la temperatura de fusión. La estabilidad de las bicapas 
lipídicas está dada por: uniones débiles, no covalentes, y fuerzas electrostáticas y puentes de hidrógeno entre las 
cabezas polares de los fosfolípidos y el medio acuoso. La composición de la mezcla de fosfolípidos de una bicapa 
difiere de la otra (asimetría lipídica). 
• COLESTEROL: es una molécula grande, constituida por cuatro anillos de carbono unidos entre sí, más un grupo 
hidroxilo. Solo está presente en las membranas de las células eucariontes animales. Se orienta con su extremo 
hidrofílico pequeño hacia la superficie externa de la bicapa y todo el resto de su estructura entre las colas de los 
ácidos grasos. El colesterol regula la fluidez, aumenta la estabilidad mecánica de la bicapa y presentan mayor fluidez 
en el interior de la bicapa (impide que las cadenas hidrocarbonadas se junten y cristalicen). 
• GLUCOLÍPIDOS: tienen la cabeza polar está constituida por residuos de glúcidos. Colaboran en la asimetría de la 
membrana al encontrarse sólo en la mitad externa de la bicapa. Se supone que colaboran en la comunicación celular 
(receptores). Difieren entre individuos de distintas especies y de una misma especie. Por ejemplo, en las bacterias y 
plantas casi todos los glucolípidos derivan del glicerol; en las células animales, derivan casi siempre de la esfingosina. 
En las membranas celulares encontramos glucolípidos neutros, como por ejemplo el galactocerebrósido (glucolípidos 
más simples y rodea al axón de la neurona). Los gangliósidos, glucolípidos más complejos, contienen oligosacáridos 
como cabeza polar y se localizan en las membranas plasmáticas de las neuronas. 
• Proteínas de membrana: tienen funciones estructurales, de reconocimiento/receptores, de transporte, o 
enzimáticas. Pueden distinguirse 2 clases de proteínas en las membranas: 
• INTEGRALES O INTRÍNSECAS: se encuentran insertadas dentro de la bicapa lipídica. Poseen regiones hidrofóbicas que 
interaccionan y otras hidrofílicas (proteínas transmembrana). Algunas proteínas, unidas en dímeros o tetrámeros, 
forman canales u orificios en la membrana que permiten el transporte de moléculas polares; otro grupo actúa como 
receptores, fijando ciertas moléculas. Existen algunas proteínas integrales formadas por 6 subunidades agrupadas en 
hexágonos, llamadas GAP JUNCTION (uniones comunicantes), que permiten a dos células comunicarse entre sí. Las 
proteínas transmembrana están dispuestas de manera asimétrica y colaboran en la fluidez de la membrana debido a 
que presentan movimientos de difusión lateral y rotación. 
• PERIFÉRICAS O EXTRÍNSECAS: se hallan expuestas sólo al medio acuoso en un lado de la bicapa (disposición 
asimétrica) y pueden estar ancladas a la membrana mediante interacciones no covalentes con proteínas 
transmembrana o unidas covalentemente a fosfolípidos de una de las monocapas. 
• Glúcidos de la membrana: se encuentran en la superficie de todas las células eucariontes. Los carbohidratos 
forman cadenas de oligosacáridos unidos covalentemente a proteínas de membrana (glucoproteínas) y a lípidos 
(glucolípidos). Los oligosacáridos se encuentran solo en las superficies no citoplasmáticas. La superficie celular, 
rica en carbohidratos, se denomina glucocálix. Los oligosacáridos se unen a los aminoácidos de las proteínas. La 
glucoforina es una glucoproteína presente en la membrana de los eritrocitos humanos, con extremos cargados 
negativamente para evitar formar grumos cuando circulan a través de los vasos sanguíneos delgados. 
 
Transporte de sustancias a través de la membrana: 
La permeabilidad selectiva se basa en lapolaridad, tamaño y grado de concentración de las sustancias que atraviesan la 
membrana. La presencia de un interior hidrofóbico en la bicapa lipídica la hace impermeable a la mayoría de las moléculas 
polares. La permeabilidad selectiva permite mantener un medio intracelular diferente al extracelular. La célula debe absorber 
nutrientes y excretar los productos residuales, para lo cual posee distintos mecanismos de transporte. 
 
TRANSPORTE PASIVO: movimiento de partículas desde un lugar en que se encuentran más concentradas hacia donde se 
hallan menos concentradas, a favor de un gradiente de concentración (esto es una difusión). El movimiento es espontáneo, 
por lo cual no requiere aporte de energía, y se realiza hasta que las partículas queden uniformemente distribuidas. Cuanto 
mayor es la diferencia de concentraciones, mayor será la velocidad de difusión. 
DIFUSIÓN SIMPLE: pasaje de soluto a favor del gradiente de concentración, sin gasto energético; la molécula que atraviesa la 
membrana no tiene carga eléctrica e hidrofóbicas; es no saturable, es decir no existe límite en la cantidad de moléculas que 
pueden ser transportadas; y pasan moléculas pequeñas de poco peso como gases (O2 o CO2) y lípidos. 
ÓSMOSIS: pasaje de agua desde un compartimiento a otro, separados por una membrana que sólo permite el pasaje de 
solvente, pero no de solutos. El pasaje de agua se va a realizar desde el compartimiento que tenga la solución más diluida 
(mayor proporción de agua, menos solutos), hacia el compartimiento con la solución más concentrada (menor proporción de 
agua, más solutos). Las partículas en solución acuosa ejercen una presión extra sobre las paredes celulares: la presión 
osmótica. La presión ejercida por las moléculas de agua que rodean al soluto es mayor que la ejercida por el solvente solo. El 
pasaje de agua desde las soluciones más diluidas (hipotónicas) hacia las más concentradas (hipertónicas) tiene como fin 
reducir la presión osmótica. Esto determina la existencia de dos soluciones isotónicas, entre las cuales no hay un pasaje neto 
de agua. Podemos decir que el pasaje de agua se produce siempre desde el compartimiento de menor presión osmótica, al de 
mayor presión osmótica, hasta que las presiones se igualen. 
DIFUSIÓN FACILITADA: no requiere aporte de energía e involucra a proteínas de membrana, que pueden ser proteínas canal 
(es a favor del gradiente electroquímico) o proteínas transportadoras o carrier (a favor del gradiente de concentración). La 
membrana plasmática presenta una diferencia en la distribución de cargas a ambos lados de la misma. La cara interior es 
negativa respecto de la exterior; por esto, los cationes entrarán más fácilmente que los aniones. Las proteínas canal son 
proteínas integrales transmembrana que poseen un canal hidrofílico, son selectivos y solo permiten el paso de un tipo 
particular de ión. Además, son bidireccionales y permiten un flujo neto del ión dependiendo del gradiente electroquímico. La 
mayor parte de los canales iónicos pueden tener conformación abierta o cerrada, a modo de compuerta. La abertura de la 
compuerta depende del canal en particular. Existen dos categorías principales: canales regulados por voltaje, en la que su 
conformación abierta o cerrada depende del gradiente eléctrico a través de la membrana; y canales regulados por ligandos, 
cuyo estado de conformación depende de la unión de una sustancia química particular. 
La difusión facilitada mediada por carrier tiene las siguientes características: los solutos transportables son sustancias polares 
(como la glucosa), cambio conformacional que permite el pasaje de la molécula, la unión carrier-molécula es de alta afinidad, 
específica y reversible, es saturable, su velocidad máxima es cuando la proteína transportadora está saturada, puede 
producirse la inhibición competitiva (ya que dos moléculas de estructura similar, pueden competir por la unión al mismo 
carrier) o la inhibición no competitiva (cuando una molécula se une al carrier, en un sitio distinto del sitio de unión, y le 
cambia la conformación al transportador, interfiriendo con el transporte). 
TRANSPORTE ACTIVO: pasaje de solutos desde el medio en que encuentran menos concentrados hacia donde su 
concentración es mayor, es decir en contra del gradiente de concentración. Gasta energía (gasta ATP). 
SISTEMAS PRIMARIOS 
Bombas: realizan el transporte activo de sustancias a través de proteínas con función enzimática. Son ATPasas o Adenosín-
trifosfatasas, que son enzimas de membrana que transportan iones, en contra de gradiente de concentración, consumiendo 
ATP. 
Un ejemplo de las bombas es la bomba sodio-potasio. Na+-K+ ATPasas: la bomba genera un gradiente de potencial eléctrico 
debido al desigual número de cationes transportados a través de la membrana celular. De esta forma quedan más cargas 
positivas en el exterior, contribuyendo al mantenimiento del volumen celular y a la generación de impulsos nerviosos en las 
células nerviosas.se modifica la forma de la proteína. Se encuentran en la membrana plasmática de las células eucariontes. 
Bombean tres iones de Na+ hacia el exterior y dos iones de potasio hacia el interior celular por cada ATP consumido. 
SISTEMAS SECUNDARIOS 
Cotransporte: La energía para este mecanismo de transporte es la del gradiente electroquímico; la trasferencia de solutos a 
través de la membrana se realiza mediante proteínas de transporte, y la transferencia de un soluto depende de la 
transferencia de otro soluto. Según la dirección de transferencia de ambos solutos se diferencian en Simporte o transporte 
unidireccional y Antiporte o Contratransporte. 
• Simporte o transporte unidireccional: Ambos solutos se transportan en el mismo sentido. Una de las moléculas lo 
hace a favor del gradiente de concentración y la otra en contra. No hay gasto directo de energía, aunque implica un 
gasto energético en otra parte de la célula. 
• Antiporte o contratransporte: Dos moléculas atraviesan la membrana simultáneamente en diferente sentido; una se 
mueve a favor del gradiente de concentración y la otra en contra. 
TRANSPORTE EN MASA: transporte partículas de gran tamaño. Implica la formación de vacuolas, por donde las moléculas se 
mueven, y están constituidas por porciones de la membrana plasmática. Es un proceso endergónico, es decir que necesita 
gastar continuamente GTP y ATP. Existen dos tipos básicos de transporte en masa: 
Endocitosis: incorpora elementos dentro de la célula; las sustancias se contactan con ciertas regiones de la membrana 
plasmática, ésta se invagina y se estrangula formando una vesícula, que engloba a la partícula para transportarla al interior 
celular. Según el tamaño de la partícula a incorporar se pueden diferenciar distintos tipos de endocitosis: 
• Si se trata de grandes partículas, el proceso se denomina fagocitosis o “comida de la célula”. En la fagocitosis la célula 
emite pliegues de la membrana plasmática rodeando a la partícula, y forman una vacuola (fagosoma), que se 
desprende de la membrana plasmática hacia el interior de la célula. 
• Cuando la endocitosis comprende la incorporación de líquidos o solutos pequeños en fase acuosa, que son ingeridos 
mediante pequeñas vesículas, se denomina pinocitosis o “bebida de la célula”. 
• En un tercer tipo, la endocitosis mediada por receptor, proteínas o partículas extracelulares especificas se unen a 
proteínas receptoras. Los pasos son: 
• Los ligandos se unen a los receptores de membrana. 
• Los receptores se desplazan y agrupan en invaginaciones de la membrana. 
• Se forma una vesícula endocítica con el complejo ligando-receptor en su interior. 
• La vesícula se divide en dos: una con los receptores, se fusiona con la membrana plasmática y los 
receptores se restituyen en ella. La otra vesícula se fusiona con el lisosoma, que degrada al ligando. 
 
Exocitosis: es un proceso de secreción, exactamente inverso al de endocitosis.Los desechos que se liberan son 
transportados por pequeñas vesículas que se fusionan con la membrana plasmática para verter su producto en el medio 
externo. 
 
RECEPTORES 
Los receptores son glicoproteínas presentes en las membranas biológicas, cuya función es el reconocimiento de sustancias. 
Las características generales que presenta un receptor son las siguientes: 
• Especificidad: significa que el receptor puede unirse en forma efectiva a solo un ligando. 
• Afinidad: tiene tendencia a unirse al ligando, debido a sus características químicas. 
• Reversibilidad: la unión hormona-receptor es "reversible", ya que es una unión de reconocimiento mutuo. 
Por endocitosis, pueden ingresar también virus que logran conocer ciertos receptores celulares en diferentes tipos de células. 
COMUNICACIÓN CELULAR: en los organismos pluricelulares, esta comunicación es necesaria para la coordinación de las 
funciones de las distintas partes del cuerpo, ya que las actividades que realiza una célula dependen de las que realicen otras. 
Las células se comunican por medio de señales químicas; libera una sustancia que le transmite información a otra célula. Los 
pasos del proceso de comunicación celular, en forma más detallada, consiste en las siguientes etapas: 
• Una célula inductora libera una sustancia que estimulará a otra célula (célula blanco). Esta sustancia, que actúa como 
señal química, se denomina ligando. 
• La célula blanco reconoce la señal química mediante proteínas receptoras que se unen al ligando. 
• La información de la señal reconocida en la membrana se transfiere al citoplasma. 
• Ya dentro del citoplasma, la señal se transmite a otras proteínas que interactúan entre sí, hasta activar a una proteína 
que desencadenará una respuesta por parte de la célula, que puede ser variada síntesis de una proteína, activación 
de la división celular, migración de la célula, activación de enzimas, inducir a la que la célula muera, etc. 
• Cese de la respuesta, como resultado de la destrucción o inactivación de las moléculas emisora de señales, ya sea el 
ligando u otra proteína. 
El proceso por el cual la señal se transmite desde el exterior hacia el interior de la célula, se denomina transducción de señal, 
ya que el estímulo recibido en la superficie de la célula es diferente de la señal liberada en el interior de la misma. Una vez que 
el ligando se une al receptor, pueden ocurrir distintos procesos, dependiendo del tipo de receptor. Podemos distinguir dos 
tipos de receptores de membrana, que los asociados a proteínas G y los receptores con actividad enzimática y finalmente, 
receptores citoplasmáticos. 
 
PARED CELULAR VEGETAL 
Está pared está formada por fibras de celulosa englobadas en una matriz, compuesta por los polisacáridos, hemicelulosa y 
pectina, junto con glucoproteínas. Las fibras y las moléculas de la matriz están unidas por enlaces covalentes y no covalentes. 
La pared celular tiene funciones de protección, esqueléticas, y de transporte. Cada célula está rodeada por una pared celular; 
permanecen conectadas entre sí por puentes citoplasmáticos, revestidos de membrana plasmática, denominados 
"plasmodesmos". Estos permiten el tránsito de pequeñas moléculas de una célula a otra. Además, los fluidos y gases se 
infiltran por las paredes vegetales. La estructura entrecruzada de la pared restringe el intercambio de macromoléculas entre 
las células y su medio. Permite a las células sobrevivir en un medio hipotónico con respecto al interior celular, puesto que la 
célula podrá hincharse solo hasta los límites de la pared. Esta presión contra la pared mantiene a la célula en equilibrio 
osmótico, lo cual impide la entrada adicional de agua. 
 
COMPOSICION DEL CITOPLASMA 
• CITOSOL: constituye la porción soluble del citoplasma. Está formado por agua, una alta concentración de 
proteínas, compuestos orgánicos y sales inorgánicas. En el citosol se desarrollan todas las reacciones conocidas 
como Metabolismo intermedio, las cuales incluyen la degradación citoplasmática de la glucosa (glucólisis), la 
síntesis de azúcares, ácidos grasos, nucleótidos y algunos aminoácidos. Además, en el citosol se realiza la síntesis 
de algunas proteínas, donde actúan ribosomas libres y moléculas de ARN mensajero. Los ribosomas están 
formados por dos subunidades que brindan el espacio para la síntesis proteica y las enzimas que catalizan este 
proceso. En la mayoría de las células se pueden observar polisomas (conjuntos de ribosomas) que se adhieren a la 
misma molécula de ARN mensajero, sintetizando muchas copias de la misma proteína. 
• CITOESQUELETO: está formado por filamentos de estructura proteica; tiene funciones relacionadas con la forma 
celular, la ubicación o reubicación de organelas y el transporte de moléculas en el citoplasma. El citoesqueleto 
está formado por tres tipos de componentes: microfilamentos, microtúbulos y filamentos intermedios. Los dos 
primeros se forman de la unión de proteínas globulares, mientras que el último está compuesto por proteínas 
fibrosas. 
• Microfilamentos: Están compuestos por dos tipos de filamentos proteicos: la actina (formados por la 
asociación de dos proteínas globulares) y la miosina (presentan una porción helicoidal y dos cabezas que 
contienen proteínas globulares). Estas interactúan entre si formando puentes, y producen, en última 
instancia, la contracción muscular. Este mecanismo requiere el aporte de energía del ATP, dado que las 
cabezas pueden rotar, al adherirse a la actina, este movimiento produce un desplazamiento de la actina. Así, 
las cabezas de miosina se unen temporalmente a los filamentos de actina (esta unión consume ATP) y la 
“arrastran”, produciendo la contracción muscular. 
• Microtúbulos: están formados por un tipo de proteína globular llamada tubulina. Son los componentes estructurales 
de cilios, flagelos, cuerpos basales y centríolos. Estos intervienen en la forma celular y la distribución de su contenido, 
y da rigidez a las prolongaciones citoplasmáticas; a través de cilios y flagelos, intervienen en el desplazamiento de la 
célula y forman canales intracelulares que guían el desplazamiento de macromoléculas hacia sitios específicos del 
citoplasma. Los cilios y flagelos están compuestos por un eje central o axonema, donde los microtúbulos se disponen 
en nueve pares periféricos y un par central. Cada uno de los nueve pares periféricos está formado por dos 
subunidades (A y B), dos brazos de dineína y un eslabón radial. Los microtúbulos centrales se hallan inmersos en la 
matriz central. Los brazos de dineína pueden desplazarse (con gasto de energía) y alcanzar el doblete adyacente, 
produciendo el movimiento del axonema. Los cuerpos basales y centríolos son cilindros cortos. Los cuerpos basales 
son el sitio de anclaje de cilios y flagelos, y están compuestos por nueve tripletes de microtúbulos. Existen dos 
centríolos en cada célula, relacionados con los procesos de división celular (Mitosis y Meiosis) y la formación del huso 
acromático que dirige los cromosomas hacia los polos de la célula. También intervienen en la organización del 
citoesqueleto. 
• Filamentos intermedios: están formados por distintas proteínas fibrosas, las cuales determinan numerosas y 
complejas funciones. 
 
CORRIENTES CITOPLASMATICAS – CICLÓSIS: son los movimientos del citoplasma. Pueden considerarse dos regiones dentro 
del citoplasma: el endoplasma (representa la región central de la célula, más fluida); y el ectoplasma (zona periférica, más 
viscosa). En protozoos, como por ejemplo la Ameba, se observa que cuando se produce la emisión de pseudópodos (pseudo= 
falso, podo= pie), el endoplasma se desplaza en dirección a la prolongación. En este proceso, el ectoplasma parece volverse 
más fluido, y el endoplasma pasa a ser más viscoso. A estos cambios desde un estado más fluido (sol) a un estado más viscoso 
(gel), se los conoce como transiciones sol-gel. 
ENDOMEMBRANAS/SISTEMAVACUOLAR CITOPLASMÁTICO: solo se encuentran presentes en las células eucariotas, más 
precisamente, en el citoplasma de estas mismas. Permiten el intercambio de sustancias entre organelas y células. Integrado 
por: REG, REL, aparato de Golgi, y membrana nuclear, los cuales tienen una conexión estructural y funcional. 
Envoltura Nuclear: está formada por una bicapa, con sus membranas interna y externa dos membranas separadas por un 
espacio perinuclear. En su superficie eterna tiene poros que funcionan como únicas vías de comunicación entre el núcleo y el 
citoplasma, permitiendo el intercambio de macromoléculas. Los poros se asocian a proteínas para formar el complejo del 
poro. 
Retículo endoplasmático: separa compartimientos intracelulares y actúan en la síntesis de macromoléculas. Se distinguen el 
REG, asociado a ribosomas y formado por sacos (cisternas), y el REL, sin ribosomas y formado por túbulos alargados. Se puede 
considerar al retículo endoplasmático como una fábrica de membranas, capaz de sintetizar lípidos y proteínas para exportarlas 
a otros sitios de la célula o hacia el exterior. 
RER: muy desarrollado encellas que intervienen en la síntesis y secreción de proteínas, tienen ribosomas, y una composición 
proteica (riboforina), que sostienen y fijan ribosomas uniéndose a su subunidad mayor. Las proteínas son sintetizadas tanto en 
ribosomas libres como en el REG, para lo que deben atravesar la barrera hidrofóbica de esta membrana. El proceso por el cual 
las proteínas sintetizadas atraviesan la membrana e ingresan hacia el REG se conoce como descarga vectorial, y consiste en la 
transferencia de una cadena polipeptídica desde el citoplasma hacia la luz del REG, a través de su membrana (con gasto de 
energía). Estas proteínas tienen un aminoácido extra en su extremo amino-terminal (secuencia líder) y actúa como una señal 
(péptido), esta señal es reconocida y transportada (por proteínas especiales) hasta un receptor de membrana del REG. Esta 
unión se estabiliza por medio de la riboforina, que forma un complejo ribosoma-REG que dirige al ribosoma hacia la 
membrana del REG. Esta secuencia contiene aminoácidos hidrofóbicos, lo cual facilita su ingreso a través de la membrana. 
Una vez que el polipéptido en crecimiento ingresa hacia la luz del retículo, esta secuencia se elimina a través de enzimas 
específicas (proteasas). Las proteínas sintetizadas en el REG son diferentes a las sintetizadas en los ribosomas libres del 
citoplasma. Una diferencia importante es que las primeras son glucosiladas, es decir, se les agrega una cadena de 
oligosacáridos antes de ser secretadas o transportadas hacia el sistema de Golgi, los lisosomas o la membrana plasmática. Este 
proceso se realiza mediante una enzima que se encuentra asociada a la membrana del REG y que tiene su sitio activo 
expuesto hacia la luz del retículo; así, se obtienen glucoproteínas que serán nuevamente procesadas en Golgi. 
REL: una de las funciones más importantes es la síntesis de lípidos, ya que posee las enzimas necesarias para esto en la 
membrana del REL, en especial de fosfolípidos y colesterol (NO de ácidos grasos). Otra función es la detoxificación, por tener 
enzimas capaces inactivar drogas y otros compuestos peligrosos para la célula. Uno de los ejemplos mejor estudiados es el de 
la enzima citocromo P450, que agrega grupos oxhidrilo a toxinas hidrofóbicas para que as sean solubles en agua y puedan 
eliminarse. 
Aparato de Golgi: compuesto de múltiples cisternas (vesículas aplanadas). En células vegetales está formado por numerosas 
unidades superpuestas llamadas dictiosomas. Posee dos caras: una, llamada Cis o de formación, y otra, orientada hacia la 
membrana plasmática (presenta vesículas secretoras), denominada Trans. Golgi es el principal distribuidor de macromoléculas 
en la célula; manda a las moléculas orgánicas a los compartimentos: primero las etiqueta (determina donde va cada 
compuesto); luego las empaqueta (rodea de vesículas a los componentes de igual estructura que se dirigen al mismo 
compartimiento), para después distribuirlas; finalmente, repone su membrana que se fusiona con la membrana plasmática. 
Tiene dos mecanismos de secreción: uno continuo, donde el producto que se fabrica se exocita casi inmediatamente; y una 
secreción regulada donde concentran y almacenan grandes cantidades de uno o unos pocos productos en vesículas 
excretoras, hasta que recibe una señal específica y os exocita. Se dice que el aparato de Golgi genera el primer lisosoma de la 
célula. 
ORGANELAS CITOPLASMÁTICAS 
LISOSOMAS: el “sistema digestivo” de la célula. Los lisosomas son sacos membranosos cuya principal función es controlar la 
digestión intracelular de macromoléculas. Son capaces de degradar proteínas, nucleótidos, glúcidos y lípidos. Todas ellas 
tienen actividad catalítica a pHs ácidos (alrededor de 5), lo que aseguraría su inactivación en caso de ocurrir un derrame en el 
citoplasma, que posee un pH básico. Poseen una bomba que permite bombear protones para mantener el pH ácido en su 
interior. Existen dos tipos básicos de lisosomas: 
• Lisosomas primarios: “se desprenden de Golgi”; enzima hidrolítica más enzima que todavía no contienen el sustrato a 
degradar. 
• Lisosomas secundarios: enzimas hidrolíticas más sustrato que se están degradando; son sacos membranosos que 
contienen los sustratos que serán hidrolizados. También se los llama vacuolas digestivas (si provienen de la 
fagocitosis), o vacuolas autofágicas (si intervienen en la degradación de membranas u organelas celulares). 
Luego de la fagocitosis se forma una vacuola fagocítica o fagosoma que se une a un lisosoma primario para iniciar la digestión 
intracelular. Esta unión determina la formación de un lisosoma secundario (también llamado vacuola digestiva) que contiene 
enzimas hidrolíticas que digerirán el material incorporado. Si la digestión es incompleta, se forman cuerpos residuales, que 
pueden ser eliminados por procesos de exocitosis o permanecer en el citoplasma. 
MITOCONDRIAS Y LA RESPIRACIÓN AERÓBICA: son organelas presentes en todas las células eucariontes. En ellas se lleva a 
cabo la respiración celular (obtención de ATP). Por lo tanto, aquellas células que tienen un gran requerimiento energético 
tienen un elevado número de mitocondrias. Poseen una membrana externa y una interna que se pliega formando las crestas, 
en el espacio interior delimitado por la membrana interna se encuentra la matriz mitocondrial. En células con alta actividad 
metabólica las crestas ocupan la mayor parte del espacio. La matriz mitocondrial contiene las enzimas que catalizan el Ciclo de 
Krebs. En las crestas se observan citocromos y moléculas transportadoras de electrones y la enzima ATP-sintetasa. Estos 
constituyentes son los responsables de los procesos de la cadena de transporte de electrones. 
PEROXISOMAS: son organelas presentes en las células eucariontes. Su función es la de oxidar algunos compuestos (por 
ejemplo, el peróxido de hidrógeno) utilizando oxígeno atmosférico (no están relacionadas a la producción de ATP). Las 
enzimas más comúnmente halladas son la catalasa y la urea oxidasa, que son sintetizadas en el citoplasma y presentan una 
señal específica (secuencia de aminoácidos) que las identifica. Esta señal es reconocida por una proteína que la traslada hasta 
la membrana del peroxisoma, para ingresar por el proceso de descarga vectorial. Las reacciones de oxidación producen agua 
oxigenada (H2O2), que puede ser utilizada por la enzima catalasa para oxidar una variedad de compuestos o para 
transformarlo en agua y oxígeno, para prevenir a la célula de la acumulación de un compuesto altamente oxidante. También 
intervienen en los procesos de degradación de los ácidos grasos, obteniéndose acetil-CoA (utilizado para vías anabólicas o 
catabólicas). Los peroxisomas de las células del hígado y riñón intervienen en la detoxificación de varias moléculas. 
GLIOXISOMAS:

Continuar navegando

Otros materiales