Logo Studenta

Capitulo 1

¡Este material tiene más páginas!

Vista previa del material en texto

Acondicionamiento acústico del aula 105 
 - 7 - 
CAPÍTULO 1: CONCEPTOS BÁSICOS 
1.1 INTRODUCCIÓN 
En un principio; los mayas, egipcios, griegos, romanos y otras 
civilizaciones, lograron ciertos conocimientos empíricos de Acústica bien 
fundamentados en sus construcciones religiosas y artísticas, tal es el caso del 
teatro romano de Mérida en donde puede observarse un curioso efecto 
acústico, los espectadores escuchan cualquier susurro recitado sobre el 
escenario, mientras que el actor parece aislado de las malas críticas que 
podrían generar su actuación. 
Fue en 1895 cuando la Acústica se determinó como una ciencia aplicada 
a los edificios, sobre todo teatros y auditorios, pues no se conocía el cine 
sonoro. Con estos últimos estudios a mediados de los años 1920, se tomó en 
los Estados Unidos y en Europa plena conciencia del problema acústico, 
adoptando nuevas formas arquitectónicas e inventando nuevos materiales 
llamados acústicos que comenzaron a ser aplicados en los estudios de 
grabación. 
Los mejores teatros del mundo que fueron construidos antes de 1895, 
carecían de formas y proporciones acústicas adecuadas, aunque se sabía que 
las cortinas, terciopelos, asientos tapizados y personas, absorbían el sonido, 
pero nada más. El físico norteamericano Wallace C. Sabine (1868-1919) 
fundador de la acústica arquitectónica, estableció los principios y relaciones 
entre los espacios y el sonido, obteniendo mediante investigaciones empíricas, 
su fórmula para calcular los tiempos de reverberación. 
Cuando comenzaron a tomar auge los conocimientos de acústica, 
muchos de los teatros e iglesias antiguas fueron reacondicionados con 
materiales acústicos adecuados y conforme a los propios estilos de ése 
entonces. 
A continuación se exponen dos definiciones distintas del término sonido; 
sonido es: “todo fenómeno que denota una alteración física, o de presión capaz 
Acondicionamiento acústico del aula 105 
 - 8 - 
de ser registrado por el oído”, o bien, “sonido es la sensación que se percibe 
por medio del oído cuando se golpea un cuerpo sonoro, y sus moléculas 
experimentan un movimiento de ondulación y vibración”. El aire que rodea a 
ese cuerpo participa de dicho movimiento y forma en torno a él, ondas que 
llegan al oído. 
1.2 GENERALIDADES SOBRE EL SONIDO 
En este apartado se tratan algunos de los aspectos básicos del sonido, 
estos aspectos son básicos para poder entender en que consiste el sonido, 
cual es la ciencia en la que se apoya y como se transmite. 
1.2.1 ACÚSTICA 
Es la parte de la Física que estudia los sonidos en toda su dimensión. 
Las principales divisiones son: 
• Acústica subacuática: 
Estudia la transmisión de las ondas sonoras a través del agua, teniendo 
en cuenta las perdidas de transmisión, generación y recepción de sonidos, 
divergencia, absorción, reflexión, refracción de ondas y reverberación. 
• Acústica ultrasónica: 
Es la rama de la Física que estudia las ondas sonoras de frecuencias 
por encima de los 15000 Hz, que ha encontrado una creciente aplicación en la 
oceanografía, en la medicina y en la industria. 
• Electroacústica: 
Estudia los altavoces como dispositivos electrostáticos, que convierten 
energía eléctrica en energía acústica. Un micrófono es también un dispositivo 
electroestático que convierte energía acústica en energía eléctrica. En general, 
los altavoces se emplean para reproducir y amplificar el sonido, mientras que 
los micrófonos se utilizan para captar sonidos y efectuar medidas acústicas. 
Acondicionamiento acústico del aula 105 
 - 9 - 
• Acústica psicológica o psicoacústica 
Estudia lo relativo a la percepción consciente de los sonidos. 
• Acústica arquitectónica 
Estudia y aplica las técnicas más avanzadas e indicadas para evitar o 
facilitar la propagación de los sonidos sin ecos ni distorsiones. 
• Acústica medioambiental 
Estudia el impacto del ruido en las personas y en el medioambiente, 
aplica técnicas que evitan que el ruido pueda afectar a las personas. 
1.2.2 CONTROL DEL SONIDO 
Éste apartado versará sobre las características de la propagación del 
sonido en el interior de un recinto y de las distintas teorías aplicadas en el 
análisis acústico de salas, se pretende repasar brevemente los fundamentos 
teóricos que sustentan el diseño acústico de salas mediante programas de 
simulación. 
Los términos que causan frecuentemente confusión para la mayoría de 
las personas son los siguientes: reflexión, reverberación, absorción, difusión, 
reducción y pérdida por transmisión. Estos fenómenos físicos deben manejarse 
en conjunto para el adecuado control del sonido. 
1.2.3 REFLEXIÓN 
Cuando una onda llega a una superficie rígida, parte de ella es 
transmitida a través de la misma; parte la absorbe el material que la constituye, 
otra se transforma en calor y el resto es reflejada. En general, las ondas 
sonoras siguen las mismas leyes que las ondas de luz, aunque a menor 
velocidad en lo que al fenómeno de reflexión se refiere. Puede decirse que una 
onda sonora se refleja y refracta siempre que exista una discontinuidad o 
cambio de medio. Las ondas reflejadas también dependen de la superficie 
reflectora y las impedancias características de los medios. El flujo de energía 
Acondicionamiento acústico del aula 105 
 - 10 - 
sonora reflejada es proporcional al cuadrado de la amplitud de onda sonora 
reflejada. El ángulo de incidencia es igual al ángulo de reflexión, siempre con 
respecto a la normal a la superficie. 
Las superficies cóncavas reflejan el sonido enfocándolo a un 
determinado punto. Las superficies convexas reparten el sonido en todas las 
direcciones, y algunas veces se utilizan para ayudar a su mayor difusión como 
elementos acústicos arquitectónicos. Ver ángulos de incidencia y reflexión del 
sonido en la figura 1.1. 
 
Figura 1. 1: Reflexiones del sonido en superficies planas, cóncavas y convexas. 
 
Figura 1. 2: Estudio acústico en un aula. 
Acondicionamiento acústico del aula 105 
 - 11 - 
En la figura 1.2 se observa claramente cómo se realiza la reflexión del sonido a 
través del falso techo, de tal manera que, el ángulo de incidencia es igual al ángulo de 
reflexión. Esto permite que el sonido llegue correctamente a todo el auditorio. 
1.2.4 DIFRACCIÓN DEL SONIDO 
Es el cambio de dirección en la propagación de las ondas al hacer 
contacto con un obstáculo, como muros, losas, etc. La magnitud de la 
difracción depende tanto de la longitud de onda como de la magnitud de 
obstáculo. Las ondas acústicas de baja frecuencia se difractan mas fácilmente 
que las altas. 
FORMAS ARQUITECTÓNICAS FAVORABLES Y DESFAVORABLES 
PARA LA PROPAGACIÓN DEL SONIDO 
El principio fundamental para una buena acústica, es evitar las 
superficies paralelas, circulares y cóncavas. No quiere decir que formas no 
favorables sean imposible de reacondicionar acústicamente, sino que deben 
evitarse hasta donde sea posible, ya que requieren un tratamiento más 
complejo y costoso. 
1.2.5 TIEMPO DE REVERBERACIÓN 
Es el tiempo requerido por el sonido para reducirse a una millonésima 
parte de su intensidad original, o bien, para que decaiga 60 dB después de ser 
emitido. La reverberación esta caracterizada o determinada por las 
propiedades de absorción, tamaño, forma del espacio y es función de la 
frecuencia del sonido. Por lo tanto, en un recinto cerrado a menor absorción, 
tendrá mayor reverberación y a mayor absorción, menor reverberación. 
La humedad relativa del lugar cambia la absorción del sonido en el aire, 
ocasionando que a frecuencias de 1000 Hz o mayores se modifique 
ligeramente la reverberación, ya que ésta es mayor en un local húmedo que en 
uno seco. Hay fórmulas para determinar esta variante. 
Acondicionamiento acústico del aula 105 
 - 12 - 
Las gráficas de reverberación mostradas en las figuras 1.3, 1.4 y 1.5, 
nos indican en las coordenadas verticales el tiempo en segundos, y en la 
coordenadahorizontal el volumen en ft3, así pues, vemos claramente que 
existe una clasificación para diferentes tipos de locales. En caso de no 
aparecer la descripción del espacio dado se tomará la más similar. Sería ideal 
que otro tipo de recintos no clasificados en las gráficas, tuviesen un tiempo 
máximo promedio de reverberación de 1 segundo. Los diversos espacios 
arquitectónicos, deben fluctuar entre 0.3 y 2 segundos ±0.2 segundos de 
tolerancia en el interior de su rango. Es importante saber que tanto el exceso 
de reverberación como la carencia de la misma, hace confusos los sonidos y 
aumenta hasta producir ruido. El exceso es, sin duda alguna, el efecto acústico 
más común y desagradable en la mayoría de los locales. 
 
Figura 1. 3: Tiempo de reverberación para diversos tipos de locales, a una frecuencia de 
500 Hz, según H. M. Tremaine. 
Acondicionamiento acústico del aula 105 
 - 13 - 
 
Figura 1. 4: Tiempo de reverberación recomendado para diversos tipos de auditorios a 
una frecuencia de 500 Hz, segun H. M. Tremaine. 
 
Figura 1. 5: Tiempo de reverberación a 500 Hz para diversos tipos de locales en 
función del volumen, según Knudsen y Harris. 
1.2.6 ABSORCIÓN 
Es la cantidad perdida de energía acústica por m2 en un material dado, y 
está basado en la capacidad de hacerlo a través de un m3 de aire libre de 
reflexiones. A esto se le llama, Sabin o Sabine, por Wallace C. Sabine. A la 
Acondicionamiento acústico del aula 105 
 - 14 - 
parte de energía que se absorbe se le llama coeficiente de absorción, el cual 
puede variar desde menos del 1% (0.01) hasta casi el 100% (1.00). El 
coeficiente de absorción depende de la naturaleza del material, el espesor, 
colocación, la frecuencia del sonido y el ángulo de incidencia de la onda sonora 
sobre la superficie. La rugosidad o textura de un mismo material no influye de 
forma importante en la absorción. La absorción total de una habitación 
determinada, es obtenida sumando los productos resultantes al multiplicar las 
superficies de los distintos materiales que la forman, incluyendo personas, por 
sus coeficientes de absorción respectivos a una o varias frecuencias dadas. La 
absorción del aire a altas frecuencias es importante considerarla al calcular 
grandes espacios. 
1.2.7 DIFUSIÓN 
Es la distribución uniforme del sonido y uno de los principales 
requerimientos acústicos para el diseño. Esto se logra mediante la colocación 
asimétrica de los materiales acústicos y las irregularidades en muros y techos 
como quiebros, superficies convexas y otras protuberancias. Por lo tanto, todo 
aquello que suponga aumentar y dispersar las reflexiones, repercutirá en un 
incremento de la difusión. 
1.2.8 EL DECIBELIO Y ESCALAS DE MEDICIÓN 
Un decibel o decibelio es la décima parte de un Bell (dB), llamado así 
por el físico Alexander Graham Bell (1847-1922). Decimos en el ámbito popular 
que es la unidad para medir la intensidad relativa de dos sonidos. Esta es 
obtenida por medio de una relación logarítmica entre dos potencias que pueden 
ser acústicas, mecánicas o eléctricas. Si I1 e I2 son dos intensidades de sonido 
distintas, la relación: 
2
1
10·log10 I
I expresa el número de decibelios que existen 
como medida de la diferencia de intensidad se mide en términos logarítmicos, y 
no por sumatoria aritmética individual de intensidad de los mismos. Es falso 
suponer que dos personas que cantan a 60 dB cada una sumen 120 dB al 
hacerlo juntas; solo se aumentan 3 dB, y así sucesivamente al duplicarse en 
igual forma una determinada fuente sonora. 
Acondicionamiento acústico del aula 105 
 - 15 - 
Un sonido diez veces mas fuerte que otro, es 10 dB más intenso; cada 
diez veces de aumento en la intensidad significa un aumento de 10 dB en el 
sonido. Un sonido 1000 veces más intenso que otro, es 30 dB mas fuerte; otro 
sonido 10000 veces más intenso es 40 dB mas fuerte, y así sucesivamente. 
El instrumento para medir la presión sonora, es el sonómetro, que 
consta de un micrófono que es el transductor que mide presión sonora. Como 
es sabido que el oído humano no percibe los sonidos de forma plana, las altas 
y bajas frecuencias emitidas a una misma intensidad de sonido, son 
escuchadas a diferentes niveles por nuestro aparato auditivo. Las curvas y 
graficas auditivas de Fletcher-Munson confirman lo dicho. 
En la escala de medición, 0 dB no corresponde al silencio absoluto, sino 
al nivel del sonido que una persona con buen oído puede escuchar, es decir, al 
umbral de audición. Existen diferentes escalas para el dB: A, B, C, D. La escala 
(A) es la mas parecida a la percepción del oído humano y la mas generalizada 
en equipos de medición. La escala (B) intermedia, mide la intensidad de los 
sonidos en una curva semiplana y la escala (C) y (D) es casi plana al hacer una 
medición. Es muy probable que las lecturas efectuadas en las escalas B, C, D 
marquen una diferencia mayor a la escala A; a mediada que el medidor sea 
más preciso y sofisticado, contendrá un mayor número de escalas. 
1.2.9 PERDIDA POR TRANSMISIÓN 
T.L. (transmission loss) es la habilidad que tiene un material o 
construcción, para resistir el flujo de sonido a través de él, y por lo tanto, la de 
reducir la intensidad del mismo en la cara opuesta a donde llegan las ondas 
sonoras. A este fenómeno, también se le conoce como pérdida por transmisión 
y se mide en dB. 
Podemos considerar los siguientes ejemplos: supongamos que un 
recinto de 10x10x10 m, construido de hormigón armado con un espesor de 0.2 
m, si se empezara a hablar en el interior de éste, los sonidos emitidos durarían 
un tiempo mayor de 8 segundos. Esto se debe, a que el hormigón tiene poca 
habilidad para absorber el sonido y las ondas sonoras después de ser emitidas, 
Acondicionamiento acústico del aula 105 
 - 16 - 
permanecen viajando de un lado a otro por un largo tiempo (reverberación). Por 
lo tanto, la acústica dentro del cuarto sería muy pobre y de ambiente confuso. 
Sin embargo, se observaría que las propiedades del hormigón para aislar el 
sonido son excelentes; en otras palabras, se podría generar gran intensidad de 
ruido dentro del cuarto, sin que fuera posible que se escuchara en el exterior. 
Esto es porque hay suficiente masa, peso y densidad en el hormigón, 
así como poca porosidad para permitir el paso de las ondas sonoras. Los 
muros, pisos y techos de hormigón, tienen una masa tal, que la energía sonora 
no puede moverlos como un diafragma, lo que sucedería si las paredes fueran 
delgadas y ligeras, y se comportarán como membranas vibratorias. 
Imaginemos ahora una estructura similar, construida de fibra de vidrio, 
en lugar de hormigón. Si se hablara nuevamente en el interior de esta 
habitación, se vería que existe una quietud muy grande; esto es debido a que 
la fibra de vidrio no solamente absorbe una gran cantidad de sonido, sino que, 
por ser un material poroso, permite el paso de una cantidad considerable de 
energía. Por otra parte, el sonido reflejado sería casi nulo, de tal suerte que se 
dejaría de escuchar casi simultáneamente, al dejar de emitirse; la habitación 
tendría excelentes propiedades acústicas, como para escuchar música, 
conferencias u otros propósitos similares. Sin embargo, la fibra de vidrio como 
aislamiento acústico sería sumamente pobre, ya que en el exterior se podría 
escuchar con gran facilidad todo lo hablado dentro del cuarto, debido a la 
ligereza y porosidad de la fibra de vidrio. Por lo tanto, en este segundo ejemplo, 
el cuarto tendría magnificas propiedades como absorbente de sonido y muy 
pobres propiedades de transmisión. Pero si ahora se coloca la fibra de vidrio y 
el material absorbente elegido dentro del cuarto de hormigón, se están tratando 
los dos problemas simultáneamente; ya que al tratar interiormente el cuarto con 
un material absorbente, se está reduciendo muy considerablemente el tiempo 
de reverberación, o sea, el tiempo quedura el sonido después de emitirlo. Esta 
reverberación puede controlarse con la colocación, la cantidad y el espesor 
adecuados del material en cuestión. Por otra parte, el espesor de hormigón 
evita el paso del sonido al exterior, ofreciendo así un magnifico aislamiento del 
mismo. 
Acondicionamiento acústico del aula 105 
 - 17 - 
Existen varios métodos para proporcionar un buen aislamiento acústico, 
sin tener que recurrir al hormigón. En general, mientras más pesado, mayor 
masa y espesor tenga un material, será mejor aislante acústico (no absorbente) 
ya que las ondas sonoras tendrán mucha dificultad en hacer vibrar la 
estructura. Sin embargo, existen otras soluciones más eficientes como usar un 
doble muro separado por un espacio o cámara de aire. Ésta servirá como un 
colchón en el que se disipará parte de la energía sonora producida, aunque 
éste no es el único efecto que se produce. En la misma forma, se observará 
que utilizando diferentes tipos y densidades de materiales se aumenta la 
eficiencia, ya que las ondas sonoras tienden a ser reflejadas, en lugar de 
continuar en su dirección inicial. 
En un muro, para que su pérdida por transmisión del sonido sea 
efectiva, debe reducir hacia el lado opuesto 30 dB o más. Si el ruido en el 
interior es de 60 dBA, el exterior será de 30 dBA. Se han tomado estos dB de 
reducción como ejemplo, pero ello no significa que sea lo máximo deseable. 
Generalmente 50 dB de aislamiento ya es considerado como muy satisfactorio 
para ciertos muros y losas. 
Existen tablas muy completas de la pérdida de transmisión de muchos 
materiales, y están especificadas una por una en varias referencias. En la 
figura 1.7 se muestra una gráfica para obtener directamente el valor promedio 
de la perdida de transmisión en dB en función de la densidad de un material en 
lb/ft2. 
Acondicionamiento acústico del aula 105 
 - 18 - 
 
Figura 1. 6: Pérdida de transmisión de un muro aislado, homogéneo y rígido, 
promediado a través de frecuencias desde 128 a 2048 Hz frente a la masa del muro en ft2. 
1.2.10 REDUCCIÓN DEL NIVEL DE RUIDO 
Es la disminución en dB que se obtiene al tratar una superficie carente 
de materiales acústicos. Para obtener el número de decibelios en los cuales se 
ha reducido el nivel de intensidad del ruido, se aplicará una ecuación en donde 
Aa y Ab son los sumatorios de las áreas por sus coeficientes de absorción 
después y antes del tratamiento a una determinada frecuencia, generalmente 
500 Hz., aunque pueden tomarse otras frecuencias, o bien, el N.R.C. (Noise 
Reduction Coefficient, que viene a ser el coeficiente promedio) del material a 
250, 500, 1000, 2000 Hz. 
[ ]dBA
ARNR
b
a
10·log10... = (1. 1) 
Donde: 
Aa = total de unidades después del tratamiento 
Ab = total de unidades antes del tratamiento 
Acondicionamiento acústico del aula 105 
 - 19 - 
Si se duplica el área de absorción, el promedio de R.N.R. decrecerá sólo 
3 dB. 
 
Figura 1. 7: Reducción en el nivel de presión del sonido reflejado en un recinto 
proporcionado regularmente, donde prevalecen las condiciones de difusión, debido a un 
incremento en la absorción total desde Ab hasta Aa. 
1.3 PROPAGACIÓN DEL SONIDO EN EL AIRE 
El sonido nos llega la mayoría de las veces por vía aérea aunque 
también se propaga en líquidos y sólidos. Es importante saber cuáles son los 
mecanismos de propagación de las ondas sonoras, principalmente en el aire, 
así como tener unas nociones básicas del movimiento ondulatorio. 
1.3.1 FORMAS DE PROPAGACIÓN 
El sonido es creado por la oscilación o vibración de los cuerpos, tal como 
la cuerda de un instrumento musical, un tenedor o el diafragma de un altavoz. 
La vibración de los cuerpos al alterar la presión del aire en contacto con ellos, 
origina las ondas sonoras. La amplitud de dichas vibraciones a veces no sirven, 
sin embargo, sí pueden sentirse. Dependiendo del tipo de fuente, las ondas 
sonoras se emiten y las partículas de aire vibran únicamente en la dirección 
trazada por una línea, la cual une la fuente de energía y la partícula en 
vibración. La velocidad de las ondas sonoras, independientemente de su 
intensidad, es de aproximadamente 339 m/s a una temperatura de 15.5 ºC, y 
cuando están a 0 ºC la velocidad del sonido es de 340 m/s. 
En la siguiente tabla se exponen las velocidades del sonido aplicadas a 
los diferentes materiales de construcción y en el agua. 
Acondicionamiento acústico del aula 105 
 - 20 - 
MATERIAL VELOCIDAD [m/s] 
Corcho 503 
Agua fría 1449 
Agua salada 1552 
Madera de pino en dirección de la veta 3323 
Cobre 3558 
Ladrillo 4282 
Vidrio 5000 
Aluminio 5104 
Acero 5488 
Granito 6402 
Tabla 1. 1: Propagación del sonido en distintos medios. 
1.3.2 FRECUENCIA 
Es el número de veces por segundo que la perturbación de presión 
oscila alrededor del valor de la presión de equilibrio. El oído humano puede 
percibir de 20 a 20000 Hz. dependiendo de la edad. 
Las notas musicales o tonos se definen por la frecuencia, el LA en el 
teclado del piano corresponde a 440 Hz., este tono suele servir de referencia 
internacional para la afinación de instrumentos. 
Conviene mencionar, que el rango de frecuencias no es la única 
característica de importancia, sino la curva de respuesta en frecuencias, 
aunada a las siguientes particularidades: rango dinámico, respuesta en fase, 
distorsión, etc. 
1.3.3 LONGITUD DE ONDA 
La longitud de onda de un sonido, es la distancia que la onda sonora 
recorre desde su origen durante una vibración completa o ciclo. La longitud de 
onda, es igual a la velocidad del sonido dividida por la frecuencia. Se le 
identifica con la letra griega lambda λ. 
Acondicionamiento acústico del aula 105 
 - 21 - 
f
c≡λ (1. 2) 
Donde : 
c = velocidad del sonido en m/s 
f = frecuencia en Hz 
λ = longitud de onda en m 
 
Figura 1. 8: Longitud en una onda armónica sinusoidal. 
1.3.4 ANÁLISIS ESPECTRAL DEL SONIDO 
El concepto de espectro es de importancia capital en Acústica. Las 
ondas periódicas tienen asociada una frecuencia. Sin embargo, esto es sólo 
parte de la verdad, ya que por lo general dichas ondas contienen varias 
frecuencias a la vez. Esto se debe a un notable teorema matemático 
denominado Teorema de Fourier (en honor a su descubridor, el matemático 
francés Fourier), que afirma que cualquier forma de onda periódica puede 
descomponerse en una serie de ondas de una forma particular denominada 
onda senoidal (o senoide, o sinusoide), cada una de las cuales tiene una 
frecuencia que es múltipla de la frecuencia de la onda original (frecuencia 
fundamental). Así, cuando escuchamos un sonido de 100 Hz, realmente 
estamos escuchando ondas senoidales de frecuencias 100 Hz, 200 Hz, 300 
Hz, 400 Hz, 500 Hz, etc. Estas ondas senoidales se denominan armónicos del 
sonido original, y en muchos instrumentos musicales (como la guitarra) son 
claramente audibles. 
Acondicionamiento acústico del aula 105 
 - 22 - 
¿Qué sucede con un sonido original cuya forma de onda ya es senoidal? 
Cuando uno intenta aplicar el teorema de Fourier a una senoide, el resultado es 
que tiene un solo armónico, de la misma frecuencia que la senoide original, por 
supuesto. (Nótese que el Teorema de Fourier no dice que todas las formas de 
ondas deban tener varios armónicos, sino más bien que cualquier forma de 
onda puede obtenerse por superposición de cierta cantidad de senoides, 
cantidad que puede reducirse a una sola, que es lo que ocurre con las ondas 
senoidales.) El hecho de que cada onda senoidal tiene una única frecuencia ha 
llevado a llamar también tonos puros a las ondas senoidales. 
1.3.5 LA OCTAVA MUSICAL 
En acústica, como en música, las frecuencias se miden en octavas. Una 
octava es el intervalo entre dos sonidos que tienen una relación de frecuencias 
2:1. en la acústica aplicada a la arquitectura las frecuencias más comunes son 
las frecuencias centrales de las bandasde octava: 125, 250, 500, 1000, 2000 y 
4000 Hz. El uso de estas bandas de octava provienen de la música, ya que el 
Do tiene una frecuencia de 512 Hz. 
1.3.6 PRESIÓN SONORA 
Las partículas de aire se acercan y alejan entre sí alternativamente 
conforme avanza la onda sonora. Ésta representa el cambio en la presión del 
aire por arriba y abajo del nivel de la presión atmosférica, en un punto dado. 
Las presiones normales del sonido son tan pequeñas, que llegan al orden de 
una millonésima parte de la presión atmosférica. 
1.3.7 LA INTENSIDAD DEL SONIDO 
En una dirección específica y en un punto determinado, es la cantidad 
de energía sonora que fluye a través de una superficie unitaria, siendo la 
superficie perpendicular a la dirección de la onda. Esta intensidad se mide 
generalmente en W/m2. sin embargo, para nuestros propósitos basta decir que 
la intensidad, es la medida de cantidad de energía de las partículas de aire en 
vibración de una onda sonora. La intensidad del sonido, independientemente 
Acondicionamiento acústico del aula 105 
 - 23 - 
de su frecuencia, está definida como la potencia promedio transmitida por 
unidad de área en la dirección de propagación de la onda. 
Como dispositivo acústico, el oído humano es insuperable con relación 
al enorme rango de intensidades que puede percibir sin dañarse y a la 
extraordinaria sensibilidad para escuchar señales apenas audibles. Rangos 
entre 1 y 3 dB a mayor o menor intensidad son inapreciables para la mayoría 
de las personas. Sólo aquellos que están dedicados a trabajar en grabaciones 
de audio, técnicos de sonido, pueden detectar estas diferencias. 
1.3.8 CLASIFICACIÓN GENERAL POR INTENSIDADES 
0 – 55 dB sonidos bajos 
 55 – 85 dB sonidos medios 
85 – 140 dB sonidos fuertes 
Clasificación de sonidos a niveles típicos promedios en dBA 
dBA Sonidos 
130 –150 Prensas hidráulicas, equipos neumáticos y turbojets; 120 o más umbral del dolor 
110 Tormentas, martillos neumáticos, aeropuertos y ferrocarriles 
100 – 110 Discotecas (niveles no recomendables). Es necesario que se cuente con un buen diseño acústico para el control del sonido 
95 –100 Ciertas fabricas e instalaciones industriales con turbinas y molinos; maquinaria centrifuga para el aire acondicionado. 
90 –100 
Salones para baile con música. Estos volúmenes aturden y no 
permiten escuchar bien una conversación. De 90 a 95 trafico muy 
ruidoso. 
85 ± 5 Óptimo volumen de música en cabinas durante la grabación del sonido. Gran orquesta sinfónica a 6 metros de distancia 
80 – 90 Trafico ruidosa en la calle; oficinas muy ruidosas sin tratamiento acústico hasta 85, aspiradoras. 
75 –85 Tráfico promedio 
70 Maquinas de escribir, calculadoras, teléfonos a 1 metro de distancia 
65 – 70 Una pequeña orquesta de cuerda 
65 – 77 
Salón de banquetes, restaurantes, bares, oficinas, bancos y lugares 
muy concurridos con tratamiento acústico; a partir de un cupo de 50 
hasta 80 personas. 
55 – 70 Enormes establecimientos comerciales con tratamiento acústico. Voz humana desde 60 hasta 70 a 1 metro de distancia. 
50 – 55 Trafico ligero a 30 metros de distancia 
Acondicionamiento acústico del aula 105 
 - 24 - 
45 – 55 Hall de un hotel, conversaciones en voz baja, lugares tranquilos y casas. 
Tabla 1. 2: Clasificación de sonidos a niveles típicos promedios en dBA. 
Criterios de ruido de fondo promedios en edificios sin música y voces 
dBA Lugares 
35 – 45 Hospitales, cines, iglesias, santuarios, bibliotecas y pasillos, habitaciones de hotel. 
30 – 35 Teatros vacíos y oficinas privadas. 
25 – 30 Salas de conciertos, dormitorios en horas de descanso 
20 – 30 Estudio de cine y doblajes. Grabaciones de audio, TV y video 
10 Murmullos, cuartos para pruebas de sonido, caída de hojas 
0 Umbral auditivo – 20 micropascales 
Tabla 1. 3: Criterios de ruido de fondo en edificios sin música y voces. 
1.3.9 CRITERIO DE RUIDO (NC) 
Es el nivel de ruido máximo permisibles para un determinado recinto 
medido en su nivel de presión por banda de octava, en función de las 
frecuencias medias de las bandas de una octava. Éste valor es distinto para 
cada banda de octava. 
Para salones de música, se recomienda la curva NC – 25 y para cines y 
hospitales la NC –30. comúnmente, la curva NC – 20 es la más utilizada para 
auditorios, teatros, salas de conciertos, estudios de grabación y similares; de 
ser posible es preferible llegar a NC –15. La curva NC incluye todo tipo de 
ruidos externos, internos y aire acondicionado. La primera curva inferior 
izquierda, indica aproximadamente el umbral auditivo para ruidos continuos. 
Acondicionamiento acústico del aula 105 
 - 25 - 
 
Figura 1. 9: Criterio de ruido o curvas NC, indicando el nivel de ruido máximo permisible 
para un determinado recinto. 
1.3.10 MÚSICA, VOZ Y RUIDO 
Los sonidos tienen por lo general un rango de frecuencias amplio, lo que 
significa que sus fuentes de origen vibran a distintas frecuencias. En música, el 
oído capta la frecuencia mas baja de un tono complejo, y con ella identifica el 
tono de la nota; a esta frecuencia se le llama frecuencia fundamental. Como la 
voz humana tiene la suya propia y es producida por las cuerdas vocales; la 
frecuencia fundamental en la voz masculina es de aproximadamente 125 Hz., 
mientras que, en la femenina esta frecuencia fundamental es de una octava 
mayor, aproximadamente 250 Hz. las voces humanos pueden producir hasta 
8000 Hz. 
El ruido puede definirse como un sonido muy desagradable, aunque 
puede ser de origen musical, es ocasionado generalmente en salones de fiesta, 
restaurantes, oficinas, calles transitadas, lugares concurridos, fabricas, etc., 
Acondicionamiento acústico del aula 105 
 - 26 - 
esta clase de ruidos, rara vez tienen una frecuencia predominante que pueda 
considerarse como frecuencia fundamental. Estos ruidos generalmente tienen 
su mayor rango en las medias o altas frecuencias.

Continuar navegando