Logo Studenta

Ejercicios_Energía_tercero

¡Este material tiene más páginas!

Vista previa del material en texto

[Hazlo Tú] CT_007 La Enegía.doc
- 1 -
1 Tema 1: La energía: El motor de la vida
1.1 PRACTICA LO APRENDIDO
1.1.1 Esa cosa llamada... energía
"Energía" es una de esas palabras que todo el mundo usa sin pararse a pensar que, en
realidad, está empleando un concepto científico.
En efecto, como has estudiado en los contenidos de este tema, la energía es una
magnitud física que se caracteriza por tener una serie de propiedades. Sobre estas
propiedades es sobre lo que va este ejercicio.
A continuación tienes una serie de frases relativas a la energía. Tienes que indicar,
haciendo una cruz en la casilla correspondiente, si la frase refleja alguna propiedad de la
energía o no.
También debes escribir un ejemplo o contraejemplo que apoye tu respuesta:
 Si has contestado que la frase es verdadera, pon un ejemplo en el que se vea
claramente que la energía tiene esa propiedad.
 Si has contestado que la frase es falsa, pon un contraejemplo en el que se vea
claramente que la energía no tiene esa propiedad.
PROPIEDAD: La energía puede ser almacenada.
a) Verdadero
b) Falso
EJEMPLO Una pila o una batería almacenan energía química. En el agua de un
embalse se almacena energía potencial gravitatoria. En general, la energía potencial
de cualquier tipo, es energía almacenada de algún modo en el sistema que la posee.
PROPIEDAD: La energía se crea en las centrales eléctricas.
a) Verdadero
b) Falso
CONTRAEJEMPLO: Según el principio de conservación de la energía, la energía no
se crea ni se destruye, solo se transforma. Por eso, las centrales eléctricas no crean
energía. Sólo transforman en energía eléctrica la energía de otro tipo que poseen las
fuentes de energía que usa la central.
[Hazlo Tú] CT_007 La Enegía.doc
- 2 -
PROPIEDAD: La energía se puede transformar.
a) Verdadero
b) Falso
EJEMPLO: Acabamos de decirlo en la frase anterior. Cada fenómeno del Universo
supone una transformación de energía. Las centrales eléctricas transforman en energía
eléctrica otro tipo de energías. El motor de un coche transforma en energía cinética la
energía química del combustible, etc...
PROPIEDAD: La energía no se puede transferir de un cuerpo a otro.
a) Verdadero
b) Falso
CONTRAEJEMPLO: Claro que se puede transferir. Cuando un futbolista golpea con
su pie a un balón parado, le transfiere parte de la energía metabólica que obtuvo de
los alimentos que tomó. Por eso el balón se pone en movimiento, porque toma parte
de esa energía como energía cinética.
PROPIEDAD: La energía se destruye cuando se utiliza.
a) Verdadero
b) Falso
CONTRAEJEMPLO: No es cierto. Lo dice el principio de conservación de la energía:
tan solo se transforma, no se crea ni se destruye. Lo que sí sucede es que en toda
transformación de energía, parte de la energía obtenida está en forma de calor, que es la
forma menos útil de la energía. Por tanto, cada vez que se usa la energía, una parte de la
misma se degrada, se convierte en calor que no puede volver a utilizarse.
[Hazlo Tú] CT_007 La Enegía.doc
- 3 -
1.1.2 Dime qué eres y te diré qué energía tienes
Aunque la energía es "una", se manifiesta a nuestro alrededor de muchísimas formas y
tenemos la mala (o buena) costumbre de utilizar un nombre distinto para cada una de las
manifestaciones de la energía.
En la siguiente tabla se describen algunos sistemas físicos y algunas situaciones. Debes
completarla escribiendo al lado el tipo de energía que se pone de manifiesto en cada sistema o
situación.
Pueden servirte de ayuda los siguiente términos que se emplean habitualmente para
referirnos a diferentes manifestaciones de la energía: eólica, solar, mareomotriz, química,
fotovoltaica, nuclear, térmica, lumínica, cinética, sonora, potencial elástica, mareomotriz,
geotérmica, hidráulica, potencial gravitatoria, electromagnética, eléctrica.
¡¡Ojo, no todos los tipos de energía mencionados arriba tienes que utilizarlos!!
SISTEMA O SITUACIÓN TIPO DE ENERGÍA
1 Muelles del sistema de amortiguación de una bici.
2 Ladrillo a punto de caerse del borde de un tejado.
3 Piedra lanzada a gran velocidad.
4 Olla de agua que lleva un rato al fuego.
5 Batería del coche.
6 Olas que rompen contra un acantilado.
7 Bidón lleno de gasolina.
8 Lo que hace moverse a los molinos que atacaba D. Quijote.
9 Volcán que entra en erupción.
10 Cilindro de 1 kg de uranio-235
Solución:
1.-Energía potencial elástica que se va almacenando y liberando en los muelles de los
amortiguadores.
2.-Energía potencial gravitatoria que tiene el ladrillo por estar a cierta altura respecto al suelo.
3.-Energía cinética que tiene la piedra por estar en movimiento.
4.-Energía calorífica que tiene el agua por estar a cierta temperatura.
5.-Energía química que está almacenada en las sustancias químicas que contiene la batería.
6.-Energía mareomotriz, que es la energía cinética asociada a los movimientos del mar.
7.-Energía química almacenada en los enlaces que mantienen a los átomos unidos en las
moléculas de la gasolina.
8.-Energía eólica, que es la energía cinética del viento, la asociada al movimiento del aire.
9.-Energía geotérmica, que es la energía calorífica que posee el interior de la Tierra y que se
libera en determinados lugares como, por ejemplo, los volcanes.
10.-Energía nuclear, que es un tipo de energía potencial almacenada en los núcleos de los
átomos y que se libera en algunos tipos de átomos inestables, como el de U-235.
[Hazlo Tú] CT_007 La Enegía.doc
- 4 -
1.1.3 ¿En qué unidades lo expreso?
Has aprendido en este tema que la energía se puede medir en diferentes unidades y
también cuáles son las más utilizadas (aunque hay muchas más).
Las tres unidades que has estudiado en el tema ni son igual de grandes ni se suelen usar
en las mismas situaciones. En este ejercicio tendrás que manejarlas y practicar cómo
cambiar de una a otra. Se trata de que expreses las siguientes cantidades de energía en
la unidad que te parezca más correcta y lo escribas en la columna correspondiente de la
tabla siguiente.
En cada caso, indica con claridad todos los razonamientos y todas las cuentas que has
tenido que hacer para realizar el ejercicio.
ALIMENTO
CONTENIDO ENERGÉTICO EN
UNIDADES DEL SISTEMA
INTERNACIONAL
CONTENIDO
ENERGÉTICO EN LA
UNIDAD ELEGIDA
Yogur desnatado 526680
Consumo eléctrico
medio mensual por
hogar
1308600000
Realiza aquí las cuentas y comprueba luego el resultado:
[Hazlo Tú] CT_007 La Enegía.doc
- 5 -
Solución:
126 kcal
363,5 kWh
Las unidades que hemos estudiado en este tema son el julio (J) que es la unidad de energía en
el S.I., el que usan los científicos, la caloría (cal) que suele usarse para indicar el contenido
energético de los alimentos y el kilovatio-hora (kWh) que es la unidad en la que suele
expresarse la energía eléctrica que consumimos en nuestras casas.
Para pasar de una unidad a otra tenemos que conocer el factor de conversión correspondiente
y multiplicar o dividir por él, según el caso.
Tras estudiar con atención los contenidos del tema nos damos cuenta de que los factores de
conversión que necesitamos son:
- 1 kWh = 3600000 J
- 1 cal = 4,18 J
Con estos datos ya podemos hacer los cálculos para resolver el ejercicio.
En el primer caso, el del yogur desnatado, expresaremos la energía en calorías, la unidad que
suele usarse para indicar el contenido energético de los alimentos. Como la caloría es una
unidad más grande que el julio y tenemos que pasar de julios a calorías, debemos dividir el
número de julios entre el factor de conversión (pasamos de una unidad pequeña, el julio, a
otra más grande, la caloría)
El resultado que hemos obtenido podemos expresarlo en otra unidad más adecuada, la
kilocaloría (kcal), un múltiplo de la caloría que es la que más se usa para los alimentos. Como
1 kcal son 1000 cal, para pasar de calorías a kilocalorías solo tenemos que dividir entre mil
(como para pasar de metros a kilómetros o de gramos a kilogramos).
Así que 126000 cal = 126 kcal
En el segundo caso, el del consumo eléctrico, expresaremos la energía en kilovatios-hora, la
unidad quesuele usarse para indicar la energía eléctrica que consumimos en nuestras casas.
Como el kilovatio-hora es una unidad más grande que el julio y tenemos que pasar de julios a
kilovatios-hora, debemos dividir el número de julios entre el factor de conversión (pasamos
de una unidad pequeña, el julio, a otra más grande, el kilovatio-hora)
[Hazlo Tú] CT_007 La Enegía.doc
- 6 -
2 Tema 2: El recibo de la luz
La factura incompleta
Seguro que a estas alturas una factura de la
luz no tiene secretos para ti. Ahora es un
buen momento para comprobar si de verdad
has entendido dónde está cada cosa dentro
de la factura.
Para ello observa con atención la factura que
verás mejor al hacer click en la imagen.
¡Esta incompleta! ¿Lo has notado?
Pues tienes que rellenar lo que falte...
Intenta hacer este ejercicio y... si ves que te
atrancas más de la cuenta o resulta que la
has terminado y quieres comprobar qué tal lo
has hecho, entonces, pulsa el botón de más
abajo para ver la solución.
Lo primero que tenemos que hacer es
observar atentamente la factura para ver qué datos son los que faltan. Este
examen atento nos revela que faltan siete datos (hay siete espacios en blanco):
 En los datos del cliente falta la potencia contratada.
 En consumo falta el consumo del periodo.
 Y en facturación están todos los demás datos que faltan:
 El precio (por kW y mes) de la potencia contratada.
 El coste del consumo (y ni siquiera sabemos la energía que
se ha consumido)
 Lo que pagamos por IVA y el total de donde se calcula el
porcentaje.
Pero enseguida nos damos cuenta de que muchos de esos datos no tenemos
que calcularlos, porque ya están en la factura escritos en otros lugares. Por
ejemplo:
[Hazlo Tú] CT_007 La Enegía.doc
- 7 -
En los datos del cliente falta la potencia contratada: No es problema, también
está en el apartado de facturación, donde se calcula lo que pagamos por el
término de potencia: Luego la potencia contratada
será 4,4 kW.
En consumo falta el consumo del periodo: Para averiguar este dato sí que
tenemos que hacer un cálculo sencillo. El consumo del periodo es la diferencia
entre las dos lecturas del contador que aparecen; la actual menos la anterior (la
mayor menos la menor): 1029 - 847 = 182
Por tanto, el consumo del periodo es de 182 kWh (poner la unidad en la que
se mide cada magnitud es fundamental, no lo olvides)
El precio (por kW y mes) de la potencia contratada: también lo calculamos
haciendo una cuenta sencilla. El coste total del término de potencia sí que lo
sabemos (12,64 €). Y también sabemos que se calcula multiplicando la
potencia contratada (4,4 kW) por el número de meses facturados (2 meses) y
por el precio de la potencia contratada por kW y mes.Tan solo tendremos que
dividir:
Luego el precio de la potencia contratada debe ser 1,43636 €
El coste del consumo: para calcularlo necesitamos saber el consumo del
periodo, que ya hemos averiguado antes (182 kWh). Solo deberemos
multiplicar este consumo por el precio del kWh, que sí aparece en la factura:
182 kWh × 0,081587 €/kWh = 14,848834 €
Como tenemos que redondear al céntimo de euro, el coste del consumo será
14,85 €
Lo que pagamos por IVA y el total de donde se calcula el porcentaje: El IVA
se paga "al final del todo". Es decir, se suman todos los conceptos de la factura
(términos de potencia y de consumo, impuesto sobre electricidad y alquiler de
equipos) y, a todo eso, que se llama base imponible, se le calcula el IVA.
En la factura incompleta sí aparece la base imponible (29,98 €)
. Esa es la cantidad sobre la que
tendremos que calcular el 16% de IVA:
De nuevo, redondeamos al céntimo y tenemos que de IVA hay que pagar
4,80 €.
Puedes comprobar qué tal lo hemos hecho viendo la factura completa.
http://www.juntadeandalucia.es/educacion/adistancia/noformal/file.php/149/Bloque01/Unidad01/Contenidos02/practica/factura_solucion.jpg
[Hazlo Tú] CT_007 La Enegía.doc
- 8 -
[Hazlo Tú] CT_007 La Enegía.doc
- 9 -
¿Hay algo que no cuadre?
Sí, te habrás dado cuenta de que el precio de la potencia contratada no es el
que hemos calculado, sino ligeramente menor (1,43614 €) ¿Por qué esta
discrepancia?
Si hacemos la cuenta que viene indicada en la factura obtenemos: 4,4 kW × 2
meses × 1,43614 €/kW·mes = 12,638032€
Al redondear esta cantidad al céntimo, nos salen los 12,64 €que aparecen en
la factura. Algo más que el coste teórico, pues el redondeo ha salido al alza.
Como nosotros hemos usado los 12,64 €, el precio de la potencia contratada
nos ha salido algo mayor también.
La factura del gimnasio
En este tema has visto que la relación entre el coste en euros que pagamos por los
términos de potencia y consumo juntos y el consumo de energía en kWh, tiene como
representación gráfica una linea recta que no pasa por el origen.
Pero no solo esta relación es así; hay otras muchas.
Teresa va de forma habitual a un gimnasio. Cada mes, debe pagar una cuota de 35 €
y, además, si se apunta a las actividades con monitor que oferta el gimnasio, debe
pagar por cada sesión, 1,32 €.
1. Completa la siguiente tabla en la que debes calcular cuánto pagará Teresa al final
del mes, según el número de sesiones a las que asista:
2.Cuanto tengas la tabla rellena, representa
gráficamente los datos en una hoja de papel
milimetrado.
Intenta hacer tú solo/a este ejercicio y... si ves
que te atrancas más de la cuenta o resulta que
la has terminado y quieres comprobar qué tal lo
has hecho, entonces, pulsa el botón de más
abajo para ver la solución.
Esta situación es totalmente similar a la que has estudiado en el factura de
la luz. Teresa siempre pagará algo en su factura; aunque no asista a ninguna
sesión con monitor. Siempre tiene que pagar la cuota mensual: ¡los dichosos
35 €!
[Hazlo Tú] CT_007 La Enegía.doc
- 10 -
1. La fórmula que me permitirá calcular el importe total de la factura a partir
del número de sesiones a las que asista Teresa será:
IMPORTE DE LA FACTURA = 35 + 1,32 × NÚMERO DE SESIONES
Aplicando esa fórmula y sustituyendo sucesivamente los números de sesiones
que nos indican en la tabla, tendremos:
 Para 0 sesiones: IMPORTE DE LA FACTURA = 35 + 1,32 × 0 = 35 €
 Para 5 sesiones: IMPORTE DE LA FACTURA = 35 + 1,32 × 5 = 41,6 €
 Para 10 sesiones: IMPORTE DE LA FACTURA = 35 + 1,32 × 10 = 48,2 €
 Para 15 sesiones: IMPORTE DE LA FACTURA = 35 + 1,32 × 15 = 58,4 €
 Para 20 sesiones: IMPORTE DE LA FACTURA = 35 + 1,32 × 20 = 61,4 €
La tabla quedaría tal y como se ve a la derecha.
2. Para hacer la representación gráfica tendremos que tener en cuenta, sobre
todo, las escalas que elegimos para los ejes.
 En el eje de abcisas, donde pondremos el número de sesiones (la
variable independiente), elegiremos una escala de 0 a 20 sesiones, en
intervalos de 5.
 En el eje de ordenadas, donde pondremos el importe de la factura (la
variable dependiente), elegiremos una escala de 0 a 75 €, en intervalos
de 15 €
La gráfica quedaría más o menos así:
[Hazlo Tú] CT_007 La Enegía.doc
- 11 -
3 Tema 3: GENERACIÓN Y TRANSPORTE DE ENERGÍA ELÉCTRICA
Las fábricas de la electricidad
En los contenidos has estudiado que la energía eléctrica de la que tanto dependemos
hoy día en nuestras casas se obtiene en unas auténticas "fábricas de electricidad":
las centrales eléctricas.
Aunque cada tipo de central eléctrica tiene sus peculiaridades, este proceso es
similar en la mayoría de ellas. ¿Recuerdas cuál es el proceso?
1. En las siguientes imágenes puedes ver una representación de los tres aparatos
fundamentales en los que se basa el proceso industrial más habitual que se usa
para obtener energía eléctrica "lista para ser llevada a nuestras casas". ¿Sabes cómo
se llaman? Escribe debajo de cada una de las imágenes el nombre del aparato que
representa.
ALTERNADOR TRANSFORMADOR TURBINA
2. Bien, que sepas cómo se llaman está pero que muy bien, pero también es
importante saber lo que hacen ¿no crees?. Completa la tabla siguiente escribiendo el
nombre de los aparatos anteriores en el orden en el que se utilizan en una central
eléctrica. Juntoa cada nombre, describe brevemente qué es lo que hace, qué misión
desempeña en la central.
FUNCIÓN QUE DESEMPEÑA
1º
TURBINA La turbina es la primera que entra en juego. A partir de la energía de la fuente que
use la central, y mediante el mecanismo propio de cada central, se genera un fluido en
movimiento que hace girar a la turbina.
La misión de la turbina es aprovechar la energía cinética de ese fluido en movimiento para
girar y transmitir ese giro al alternador.
2º
ALTERNADOR Es el auténtico corazón de la central. Aprovechando las características
electromagnéticas de imanes y bobinas, el alternador puede transformar la energía cinética de
su giro en energía eléctrica.
Esta energía eléctrica se obtiene del alternador en forma de corriente eléctrica.
3º
TRANSFORMADOR La corriente eléctrica producida por el alternador tiene un voltaje
muy pequeño.
El transformador es la última etapa de la central y tiene como misión elevar ese voltaje hasta
valores de alta tensión, preparando así a la energía eléctrica para su transporte hasta los
centros de consumo.
[Hazlo Tú] CT_007 La Enegía.doc
- 12 -
Distintas fuentes, distintos nombres
Como has visto en los contenidos, la mayoría de las centrales eléctricas emplean el
mismo sistema para producir energía eléctrica: el sistema turbina-alternador del que
has hablado en el ejercicio anterior. Sin embargo, las conocemos con nombres muy
diversos ¿los recuerdas? La razón es que usan fuentes de energía diferentes para
mover la turbina.
En este ejercicio tendrás que demostrar que sabes qué fuente de energía emplean
las diferentes clases de centrales eléctricas.
En la tabla siguiente se relacionan algunos de los tipos de centrales eléctricas de las
que has estudiado en los contenidos. Tienes que completar la tabla escribiendo,
junto a cada tipo de central, cuál es la fuente de energía que emplea y señalando si
se trata de una fuente renovable (R) o no renovable (NR) haciendo una marca en la
casilla correspondiente.
Es muy frecuente confundir los conceptos de fuente de energía y de forma de
energía. Cuando hablamos de una fuente de energía nos estamos refiriendo a
un recurso natural del que "extraemos" energía para transformarla.
Se dice que una fuente de energía (o cualquier otro recurso natural) es
renovable si con un uso adecuado siempre podremos disponer de ella, puesto
que se regenera a corto o medio plazo. En otro caso decimos que el recurso
natural es no renovable.
Una vez que está claro lo que entendemos por fuente de energía, y por
"renovable", la tabla quedaría así:
TIPO DE CENTRAL FUENTE DE ENERGÍA R NR
HIDROELÉCTRICA Agua embalsada o corrientes de agua X
TÉRMOELÉCTRICA Combustibles fósiles y sus derivados (petróleo, carbón,gas natural, fuel oil) X
NUCLEAR Fundamentalmente uranio X
TERMOSOLAR El sol. X
EÓLICA El viento. X
DE BIOMASA
Combustibles vegetales procedentes de desechos de
actividades agrícolas y ganaderas o cultivos realizados
específicamente como fuente de energía.
X
FOTOVOLTAICA El sol X
[Hazlo Tú] CT_007 La Enegía.doc
- 13 -
4 Tema 4: RENDIMIENTO ENERGÉTICO
Buscando más
eficiencia...
¡La energía no se crea ni se
destruye, solo se transforma!
Esto es lo que dice el
principio de conservación de
la energía ¿no? Entonces,
¿por qué preocuparnos tanto
por ahorrar energía? ¡Si no
se puede destruir! En el primer tema del bloque ya había una razón para ahorrar
energía: la energía no se destruye, pero se degenera; pierde utilidad en cada una de
sus transformaciones.
En este tema has encontrado otra importante razón. ¿Sabrías decir cuál?
Quizá la lectura de este texto te de pistas...
"La tecnología del ciclo combinado de gas consiste en utilizar la
combustión del gas natural y el vapor que producen los gases de
escape para generar electricidad. Es decir, con una misma fuente
energética, el gas natural, se obtiene electricidad en dos etapas.
En La primera etapa una turbina de gas, el núcleo principal de la
central, genera electricidad a partir de la combustión del gas.
En la segunda se reutilizan los gases de escape de dicha turbina
generando vapor de agua, que se dirige a una turbina de vapor
acoplada a otro generador eléctrico.
En definitiva, se trata de generar energía eléctrica por medio de la
combustión de gas natural en la turbina de gas y aprovechar el calor
residual en una turbina de vapor para generar más energía eléctrica. Se
obtiene así un doble rendimiento de una misma fuente de energía, el
cual se cifra en un 57%, superior al rendimiento de alrededor de un
36% de una central convencional."
(Adaptado de Noticias.com)
¿Te ha dado pistas el texto? Pues sobre él te hacemos tres preguntas:
 1. ¿Qué importante razón para ahorrar energía has aprendido en este tema?
 2. ¿Qué significa el término "rendimiento" cuando se aplica, como en el texto
anterior, a una central eléctrica?
 3. Una central térmica de gas convencional produce 68 MW de potencia (por
poner un ejemplo) ¿Cuánta energía se ahorraría usando una central de ciclo
combinado para producir la misma cantidad de energía?
[Hazlo Tú] CT_007 La Enegía.doc
- 14 -
1. Lo que hemos aprendido en este tema, en lo tocante a ahorrar energía, es
que en las transformaciones energéticas, el rendimiento nunca es del 100%.
Eso significa que siempre se obtiene menos energía útil que la energía de
partida. Si se investigan y se consiguen sistemas más eficientes de transformar
energía, se estará avanzando en el camino de ahorrar energía.
2. El rendimiento es siempre la relación entre lo que se obtiene y lo que se
invierte. En el caso de las centrales eléctricas significará la relación entre la
energía eléctrica que producen y la energía que poseía la fuente que han
utilizado.
3.En primer lugar, aclaremos que 68 MW (68 megavatios) son 68 millones
de vatios (68000000 W). Es decir, la central produce 68 millones de julios de
energía ¡¡cada segundo!!
Para contestar a la pregunta que se plantea tendremos que hacer algunas
cuentecillas.
Lo primero será calcular cuánta energía necesita consumir cada central para
producir esos 68 MW. Para esto necesitamos los datos del rendimiento de cada
central y aplicar la fórmula del rendimiento:
de la que despejaremos la "Energía consumida":
Para no liarnos nos vamos a fijar en la energía consumida por cada central en
un segundo. Recordemos que la energía obtenida en ese segundo debe ser 68
millones de julios o, expresado en notación científica, 6,8·107 J.
 La central convencional, con un rendimiento del 36%, consumirá:
 La central de ciclo combinado, con un rendimiento del 57%, consumirá:
Ahora debemos restar ambos resultados para averiguar cuánto ahorra una
central respecto a otra:
De modo que la central de ciclo combinado ahorra 0,7·108 J, que son
70000000 J, o sea, para entendernos, 70 millones de julios ¡¡cada segundo!!
[Hazlo Tú] CT_007 La Enegía.doc
- 15 -
5 Tema 5: LA ENERGÍA MECÁNICA
¡Cuidado, modera tu velocidad!
Aunque has visto que la energía se nos
presenta de muchas formas distintas y
recibe muchos nombres diferentes, en el
fondo, todas esas formas son
manifestaciones de dos formas básicas de
energía: la energía cinética (asociada al
movimiento) y la energía potencial
(asociada a la posición)
En los contenidos has estudiado con
cierta profundidad tanto la energía cinética como un tipo de energía potencial
asociada a la altura, la energía potencial gravitatoria. En este ejercicio tendrás que
usar sus fórmulas para resolver un par de problemas muy ilustrativos relacionados
con la velocidad al volante.
1. Imagina que un coche de 1532 Kg de masa viaja a una velocidad de 108 Km/h y
choca frontalmente con un muro ¿chungo, verdad?. Chungo porque ese coche tendrá
un montón de energía cinética. ¿Calcula cuánta?
2. Imagina ahora que ese mismo coche (bueno, ese no, que se ha destrozado; otro
coche idéntico) se eleva con una grúa hasta cierta altura y luego se deja caer para
que impacte sobre el suelo. ¿A qué altura hay que subirlo para que al chocar contra el
suelo los efectos sean los mismos que cuando chocócontra el muro?
1. Como en todos los problemas de cálculo, lo primero que tenemos que
hacer es comprobar si los datos están en las unidades del S.I. En este caso la
masa del coche sí lo está, pero la velocidad que lleva no.
Pasamos la velocidad de Km/h a m/s. Para eso tan solo tenemos que dividirla
entre 3,6:
Ahora sustituimos los valores de los datos conocidos en la fórmula de la
energía cinética (Ec = ½·m·v2), que es lo que queremos calcular, y hacemos el
cálculo:
Luego la energía cinética del coche cuando chocó contra el muro era de
689400 J.
[Hazlo Tú] CT_007 La Enegía.doc
- 16 -
2. Para resolver este problema tenemos que acordarnos del principio de
conservación de la energía mecánica, que dice más o menos que "la energía
mecánica (suma de las energías cinética y potencial) de un cuerpo que solo
esté sometido a su propio peso, se mantiene constante".
Para que al impactar contra el suelo el coche sufra los mismos daños que al
chocar contra el muro, su energía cinética al llegar al suelo tiene que ser la
misma que la que tenía al llegar al muro. La hemos calculado antes: 689400 J.
Si aplicamos el principio de conservación de la energía mecánica
deducimos que esa misma energía será la que tendría que tener cuando está a
cierta altura sujeto por la grúa. Salvo que ahora no será cinética (el coche
estará parado a cierta altura) sino solo potencial gravitatoria.
Por tanto, los datos de los que partimos para este problema son: EP = 689400 J
y m = 1532 kg. Además ya están en las unidades del S.I., de modo que
podemos sustituirlos en la fórmula de la energía potencial gravitatoria (donde
la energía se expresa en julios; la masa (m) se expresa en Kg; y la altura (h) en
metros):
EP = 9,8·m·h:
Ahora hacemos las cuentas que se puedan hacer. Tan solo podemos multiplicar
9,8×1532:
Por último, despejamos la altura dividiendo ambos miembros entre 15013,6:
Por tanto, la altura a la que habría que subir el coche es de 45,9 m.
¡¡Unos 13 pisos de alto, nada más y nada menos!!
[Hazlo Tú] CT_007 La Enegía.doc
- 17 -
6 Tema 6: LA ENERGÍA TÉRMICA
Midiendo temperaturas
La temperatura es una magnitud física muy familiar. Oímos
hablar de ella cuando vemos o escuchamos las predicciones
meteorológicas, vemos por todos lados instrumentos que sirven
para medirla: en el coche, en paneles instalados por las calles
de la ciudad, en nuestras propias casas tenemos esos
instrumentos e incluso la medimos para comprobar nuestro
estado de salud.
Pero estamos tan acostumbrados a medirla y a ver
medidas de temperatura, que olvidamos que no todo el
mundo lo hace del mismo modo, utilizando las mismas
escalas termométricas. Las escalas termométricas más
utilizadas son tres: la escala Celsius, la escala
Fahrenheit y la escala Kelvin.
En la siguiente tabla tienes algunas de las características de estas tres escalas
termométricas.
Debes escribir junto a cada una de ellas la escala a la que corresponde.
Para responder a este ejercicio tenemos que haber estudiado los contenidos y
haber visitado la animación sobre escalas termométricas.
La tabla rellena quedaría así:
CARACTERÍSTICA ESCALA
Es la escala más utilizada en nuestra vida cotidiana. CELSIUS
No es una escala centígrada. FAHRENHEIT
Asigna 273 grados a la temperatura a la que funde el hielo. KELVIN
En esta escala no existen temperaturas negativas. KELVIN
Es la escala que se emplea en EEUU FAHRENHEIT
Es la escala que emplean los científicos, la escala que del S.I. KELVIN
En esta escala el agua hierve a 100 grados. CELSIUS
Si decimos que en un día normal de verano la temperatura a
mediodía ha sido de 87 grados, estamos usando esta escala. FAHRENHEIT
También se llama escala absoluta de temperaturas. KELVIN
[Hazlo Tú] CT_007 La Enegía.doc
- 18 -
¿Cuánto se calentará?
Cuando a un cuerpo le suministramos calor lo
más normal es que aumente su temperatura.
Pero ¿todos los cuerpos aumentan del mismo
modo su temperatura cuando absorben la misma
cantidad de calor?
En los contenidos de este tema has estudiado los
fenómenos de transferencia de calor y has visto
que la respuesta a la pregunta anterior es
negativa. No todos los cuerpos se calientan (y se
enfrían) del mismo modo. Todo depende de una
característica de los materiales conocida como
calor específico.
El plomo, por ejemplo, es un material con un calor específico muy pequeño, tan solo
129 julios por kilogramo y kelvin. Si quisiéramos calentar un bloque de 5 kg de plomo
desde 22 ºC hasta 57 ºC necesitaríamos suministrarle 22575 J (que son unas 5,84
kcal).
Otros materiales tienen calores específicos más grandes. El del agua, por ejemplo, es
de 4180 julios por kilogramo y kelvin.
Y ahora viene la pregunta:
Si tuviéramos 5 kg de agua (el agua que hay en una garrafa normalita) a 22 ºC y le
suministrásemos la misma energía que al plomo de antes, ¿a qué temperatura se
pondría el agua?
No te apures, que te damos las fórmulas que pudieras necesitar:
 La equivalencia entre el julio y la caloría es: 1 J = 0,24 cal.
 La fórmula que relaciona el calor ganado con la variación de temperatura es: Q
= m·ce·(Tf - T i) o dicho de otro modo:
calor = masa × calor específico × (temperatura final – temperatura inicial)
Cuando lo resuelvas, corrígetelo tú mismo. Para ver la solución solo tienes que
hacer...
Manos a la obra:
Lo primero es tener claro qué datos son los que necesitamos para resolver el
problema porque, la fórmula que debemos usar ya nos la da muy gentilmente
el enunciado.
 Tenemos el calor que le vamos a suministrar al agua: unas 5,84 kcal.
Exactamente 22575 J.
 Tenemos la masa de agua que vamos a calentar: 5 kg.
 Tenemos el calor específico del agua: 4180 J/kg·K.
 Tenemos la temperatura inicial del agua: 22 ºC.
[Hazlo Tú] CT_007 La Enegía.doc
- 19 -
Todas las magnitudes están en las unidades del S.I., excepto la temperatura
del agua. De modo que pasamos esta temperatura a kelvin:
22 ºC = 22 + 273 =295 K.
Ahora podemos sustituir en la fórmula los valores de todas las magnitudes
conocidas:
Hacemos las cuentas que podamos:
Empezamos a despejar Tf, para lo cual pasamos el 209900 dividiendo al
primer miembro, con lo que conseguiremos despejar el paréntesis completo:
Hacemos de nuevo la cuenta que podemos hacer, la división:
Y terminamos de despejar Tf, sumando 295 K a los dos miembros, con lo que
nos queda:
Solución: El agua se pone a 296,08 K. Dicho en Celsius, para que se entienda
mejor, 296,08 K = 296,08 - 273 = 23,08 ºC
Es decir, los 5 kg de agua solo aumentan su temperatura en 1,08 grados,
hasta los 23,08 ºC.

Continuar navegando

Materiales relacionados

34 pag.
fisica3

Institucion Educativa Distrital Santa Bernardita

User badge image

María José Vásquez Martínez

44 pag.
TI1-U2-T1

User badge image

Tiempo de Aprender

8 pag.
tema07

Universidad Nacional Abierta Y A Distancia Unad

User badge image

Gredys Rincon