Logo Studenta

USMLE FISIOLOGÍA 2ed

¡Este material tiene más páginas!

Vista previa del material en texto

http://bookmedico.blogspot.com/
LANGE 
 
 
 
 
 
 
USMLE 
ROAD MAP 
 
 
PARA FISIOLOGÍA 
http://bookmedico.blogspot.com/
http://bookmedico.blogspot.com
LANGE 
 
 
 
 
 
 
USMLE 
ROAD MAP 
 
 
PARA FISIOLOGÍA 
2a. edición 
 
 
JAMES N. PASLEY, PhD 
 
Professor, Physiology and Biophysics and Medical Humanities 
Assistant Dean for Educational Advancement 
College of Medicine 
University of Arkansas for Medical Sciences 
Little Rock, Arkansas 
 
 
Traducción: 
Dr. César Manuel Gomezperalta Casali 
Dr. Félix García Roig 
 
 
 
 
 
 
 
MÉXICO • BOGOTÁ • BUENOS AIRES • CARACAS • GUATEMALA • LISBOA 
MADRID • NUEVA YORK • SAN JUAN • SANTIAGO • SAO PAULO 
AUCKLAND • LONDRES • MILÁN • MONTREAL • NUEVA DELHI • SAN FRANCISCO 
SINGAPUR • ST. LOUIS • SIDNEY • TORONTO 
http://bookmedico.blogspot.com/
 
http://bookmedico.blogspot.com/
Director editorial: Marco Antonio Tovar Sosa 
Editor sponsor: Javier de León Fraga 
Corrección de estilo: María Eugenia Cuevas 
Supervisora de edición: Leonora Véliz Salazar 
Supervisora de producción: Olga Sánchez Navarrete 
 
 
 
NOTA 
 
La medicina es una ciencia en constante desarrollo. Conforme surjan nuevos conocimientos, se requerirán cambios de la 
terapéutica. El(los) autor(es) y los editores se han esforzado para que los cuadros de dosificación medicamentosa sean pre- 
cisos y acordes con lo establecido en la fecha de publicación. Sin embargo, ante los posibles errores humanos y cambios en 
la medicina, ni los editores ni cualquier otra persona que haya participado en la preparación de la obra garantizan que la 
información contenida en ella sea precisa o completa, tampoco son responsables de errores u omisiones, ni de los resultados 
que con dicha información se obtengan. Convendría recurrir a otras fuentes de datos, por ejemplo, y de manera particular, 
habrá que consultar la hoja informativa que se adjunta con cada medicamento, para tener certeza de que la información de 
esta obra es precisa y no se han introducido cambios en la dosis recomendada o en las contraindicaciones para su adminis- 
tración. Esto es de particular importancia con respecto a fármacos nuevos o de uso no frecuente. También deberá consul- 
tarse a los laboratorios para recabar información sobre los valores normales. 
 
 
 
USMLE ROAD MAP PARA FISIOLOGÍA 
 
Prohibida la reproducción total o parcial de esta obra, 
por cualquier medio, sin autorización escrita del editor. 
 
 
 
DERECHOS RESERVADOS © 2007, respecto a la primera edición en español por, 
McGRAW-HILL INTERAMERICANA EDITORES, S.A. de C. V. 
A subsidiary of the McGraw-Hill Companies, Inc. 
Prolongación Paseo de la Reforma 1015, Torre A, Piso 17, Col. Desarrollo Santa Fe, 
Delegación Álvaro Obregón 
C. P. 01376, México, D. F. 
Miembro de la Cámara Nacional de la Industria Editorial Mexicana Reg. No. 736 
 
ISBN-13: 978-970-10-6136-7 
ISBN-10: 970-10-6136-5 
 
Translated from the second English edition of: 
USMLE Road Map: Physiology 
Copyright © 2006 by McGraw-Hill Companies, Inc. 
All Rights Reserved 
ISBN: 0-07-144517-X 
 
1234567890 09865432107 
 
Impreso en México Printed in Mexico 
http://bookmedico.blogspot.com/
 
CONTENIDO 
 
 
Uso de la serie Road Map para una revisión satisfactoria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix 
 
Agradecimientos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii 
 
1. Fisiología celular . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 
I. Membrana plasmática 1 
II. Canales iónicos 4 
III. Señalización celular 8 
IV. Potencial de membrana 11 
V. Estructura del músculo esquelético 13 
VI. Transmisión neuromuscular y sináptica 18 
VII. Músculo liso 22 
Problemas clínicos 24 
Respuestas 26 
 
 
2. Fisiología cardiovascular . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 
I. Principios generales 27 
II. Hemodinámica 28 
III. Electrofisiología 33 
IV. Músculo cardíaco y gasto cardíaco 38 
V. Ciclo cardíaco con presiones y ECG 43 
VI. Regulación de la presión arterial 45 
VII. Mecanismos de control y circulaciones especiales 47 
VIII. Función de integración 50 
Problemas clínicos 52 
Respuestas 55 
 
 
3. Fisiología respiratoria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 
I. Volúmenes y capacidades pulmonares 57 
II. Músculos respiratorios 59 
III. Distensibilidad pulmonar 61 
IV. Componentes de la fuerza de retracción 62 
V. Resistencia de la vía aérea 63 
VI. Intercambio de gases y transporte de oxígeno 64 
VII. Transporte de dióxido de carbono 68 
VIII. Control de la respiración 70 
IX. Flujo sanguíneo pulmonar 71 
X. Diferencias de ventilación-perfusión 74 
XI. Ambientes especiales 76 
Problemas clínicos 76 
Respuestas 79 
 
 
 
 
 
 
 
 
v 
http://bookmedico.blogspot.com/
vi Contenido 
 
 
4. Líquidos corporales, fisiología renal y equilibrio acidobásico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 
I. Líquidos corporales 81 
II. Función renal 85 
III. Anatomía renal 86 
IV. Flujo sanguíneo renal y filtración glomerular 89 
V. Mecanismos de transporte en los segmentos la nefrona 93 
VI. Regulación del transporte de NaCl 96 
VII. Regulación de potasio 99 
VIII. Manejo renal de la glucosa 100 
IX. Regulación de la urea 101 
X. Regulación de fosfato 101 
XI. Regulación renal de calcio 101 
XII. Regulación de magnesio 101 
XIII. Mecanismos concentradores y diluyentes 101 
XIV. Equilibrio acidobásico 104 
XV. Pistas para el diagnóstico de los trastornos acidobásicos 106 
XVI. Trastornos acidobásicos selectos 108 
Problemas clínicos 110 
Respuestas 112 
 
 
5. Fisiología gastrointestinal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 
I. Regulación: músculos, nervios y hormonas del intestino 114 
II. Secreción salival 115 
III. Deglución 117 
IV. Función motora gástrica 118 
V. Secreción gástrica 121 
VI. Movilidad del intestino delgado 124 
VII. Páncreas exocrino 127 
VIII. Secreción biliar 128 
IX. Digestión y absorción 130 
X. Movilidad de colon y recto 136 
Problemas clínicos 137 
Respuestas 139 
 
 
6. Fisiología endocrina . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 
I. Principios generales 141 
II. Corteza suprarrenal 145 
III. Médula suprarrenal 149 
IV. Páncreas endocrino 150 
V. Glucagon 153 
VI. Hormona del crecimiento humana 156 
VII. Regulación hormonal del calcio 158 
VIII. Hormonas tiroideas 161 
IX. Hormonas de la reproducción masculina 163 
X. Hormonas de la reproducción femenina 166 
Problemas clínicos 172 
Respuestas 174 
http://bookmedico.blogspot.com/
Contenido vii 
 
 
7. Neurofisiología . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 
I. Sistema nervioso autónomo 176 
II. Sistema sensorial 179 
III. Vías motoras 194 
IV. Función de la corteza cerebral en el lenguaje 203 
V. Barrera hematoencefálica y líquido cefalorraquídeo 205 
VI. Regulación de la temperatura corporal 207 
Problemas clínicos 210 
Respuestas 212 
 
 
Índice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 
http://bookmedico.blogspot.com/
 
http://bookmedico.blogspot.com/
 
 
USO DE 
LA SERIE ROAD MAP 
PARA UNA REVISIÓN S ATIS F A CT ORIA 
 
 
 
¿Qué es la serie Road Map? 
Si no se dispone de un tutor personal, la serie USMLE Road Map constituye el mejor método para revisar los conceptos 
principales y la información de las ciencias médicas. 
 
¿Por qué es necesario un Road Map? 
Se pueden consultar con rapidez y facilidad las notas y los libros de anatomía; además, es de gran utilidad para la prepara- 
ción del USMLE y otros exámenes. 
 
¿Cómo funciona la serie Road Map? 
Forma sinóptica: vincula los datos en un marco de referencia conceptual de tal manera que se comprenden las ideas y se 
retiene la información. 
 
Negritas y cursivas: resaltan las palabras y frases para poder recordar con facilidad los conceptos relevantes. 
 
Explicaciones claras: se han depurado a través de años de interacción con los estudiantes. Destacados autores redactaron el 
material, seleccionados por su excelencia académica o su experiencia en la preparación de estudiantes para presentar diversos 
exámenes. 
 
Ilustraciones: ofrecen representaciones gráficas que favorecen la comprensión y memorización. 
 
 
CORRELACIÓN 
CLÍNICA Correlación clínica: vinculan los temas con sus aplicaciones clínicas y, en 
consecuencia, simplifican también la comprensión y memorización. 
 
Problemas clínicos: ofrecen casos prácticos para responder las preguntas del USMLE 
basadas en situaciones hipotéticas. 
 
Explicación de las respuestas: constituyen herramientas de aprendizaje que permiten 
reconocer fortalezas y debilidades. 
 
 
 
 
 
 
 
 
 
 
 
 
 
ix 
http://bookmedico.blogspot.com/
 
http://bookmedico.blogspot.com/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Para Ruth, Jamie y Jonathan 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
xi 
http://bookmedico.blogspot.com/
 
http://bookmedico.blogspot.com/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Agradecimientos 
 
Un agradecimiento especial por su arduo trabajo, asistencia técnica, buenos consejos y estímulo 
a Michael Jennings, Stacey Major, Michael Soulsby y Richard Wheeler. 
Este libro está dedicado a todos los alumnos que han llevado el curso de Fisiología Médica 
y los programas de revisión para los exámenes USMLE en el University of Arkansas 
for Medical Sciences College of Medicine. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
xiii 
http://bookmedico.blogspot.com/
 
http://bookmedico.blogspot.com/
 
CCC AAA PPP ÍÍÍ TTT UUU LLL OOO 111 
FISIO L OGÍA CEL UL AR 
 
 
 
 
 
I. Membrana plasmática 
A. La membrana celular está definida por una membrana plasmática, la cual crea un medio 
molecular diferente entre las células. La doble capa lipídica es similar a delgadas capas 
de aceite rodeando áreas de ozono líquido, de modo que divide a la célula en diferentes 
compartimentos funcionales. 
B. El modelo del mosaico fluido es la visión aceptada de la naturaleza de las membranas 
plasmáticas. 
1. El modelo propone que las proteínas atraviesan la doble capa lipídica y son incor- 
poradas a los lípidos. 
2. Las proteínas y lípidos pueden moverse libremente a lo largo de la membrana, produ- 
ciendo así la naturaleza fluida de las membranas. 
C. La membrana plasmática está compuesta de fosfolípidos y proteínas. 
1. Los lípidos de la membrana pueden clasificarse en tres grandes clases: fosfolípidos, 
esfingolípidos y colesterol. 
a. Los fosfolípidos son los lípidos más abundantes dentro de la membrana y las mem- 
branas de bicapa de fosfolípidos son impermeables a moléculas cargadas. 
(1) Son de naturaleza bipolar (amfipáticas), por lo que contienen una cabeza car- 
gada y dos colas hidrófobas (insolubles al agua y no cargadas). 
(2) Las colas hidrófobas están una frente a la otra y forman una doble capa, ex- 
poniendo el grupo de cabeza polar al ambiente acuoso en cualquier lado de la 
membrana. 
b. Los esfingolípidos tienen una estructura amfipática similar a los fosfolípidos, lo 
que les permite insertarse también a las membranas. Estos lípidos pueden ser mo- 
dificados al añadirles una unidad de carbono en su extremo polar, creando así los 
glucoesfingolípidos en las células cerebrales. 
c. El colesterol es el esterol (alcoholes insaturados que se encuentran en tejidos de 
animales y plantas) predominante en las células humanas. Incrementa el paso de lí- 
quidos en la membrana al insertarse entre los fosfolípidos, mejorando la estabilidad 
de la membrana. 
 
ENFERMEDAD DE TAY-SACHS 
 
La acumulación de glucoesfingolípidos asociada con la enfermedad de Tay-Sachs causa parálisis y disfunción 
mental. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CORRELACIÓN 
CLÍNICA 
1. Las proteínas de membrana que cubren la bicapa lipídica se conocen como proteínas 
integrales de membrana, mientras que las que están asociadas con las capas interna o 
 
 
1 
http://bookmedico.blogspot.com/
2 USMLE Road Map para Fisiología 
 
 
externa de la membrana plasmática se conocen como proteínas de membrana periféri- 
cas o fijadas a lípidos, respectivamente. 
a. La mayor parte de las proteínas integrales de membrana cubre la doble capa a 
través de la formación de hélices α hidrófobas, un grupo de 20 a 25 aminoá- 
cidos trenzados para exponer la parte hidrófoba de los mismos hacia el ambiente 
lipídico de la membrana (fig. 1-1). 
b. El contenido proteínico de las membranas varía desde menos del 20% en la 
mielina, una sustancia que ayuda a la propagación y acción de los potenciales, 
hasta más del 60% en los hepatocitos, los cuales realizan actividades metabólicas. 
c. Las proteínas integrales de membrana pueden actuar como sitios receptores 
para anticuerpos, hormonas, neurotransmisores y sitios de unión a fármacos. 
d. Las proteínas integrales de membrana también pueden ser enzimas involucradas 
en la fosforilación de intermediarios metabólicos. 
e. Las proteínas integrales de membranas pueden participar en el señalamiento intra- 
celular y en las vías de regulación del crecimiento. 
f. Las proteínas integrales de membrana están involucradas en el transporte de sustan- 
cias solubles en agua. 
g. Las proteínas integrales de membrana pueden servir como moléculas de adhesión. 
2. Las proteínas transportadoras de la membrana trasladan materiales a través de la 
membrana celular. 
3. Los canales de membrana permiten que los iones polares cargados (Na+, K+, Cl− y 
Ca2+) fluyan a través de la membrana plasmática. Las compuertas de los canales de 
iones regulan el paso de los iones y son controladas por voltaje (compuerta de voltaje), 
ligandos (compuertas de ligandos) o por medios mecánicos (compuerta mecánica). 
D. La membrana plasmática actúa como barrera selectiva para mantener la composición del 
ambiente intracelular. 
1. El transporte pasivo o difusión se refiere a transporte no acoplado de solutos a través 
de la membrana plasmática dada la diferencia de concentraciones. 
a. El término pasivo implica que no existe gasto de energía para mediar directamente 
el proceso de transporte. 
 
 
 
 
Proteína 
periférica 
de membrana 
Colesterol 
 
 
 
 
 
 
 
Proteína integral 
de membrana 
 
 
Figura 1-1. Proteínas de membrana. 
http://bookmedico.blogspot.com/
Capítulo 1: Fisiología celular 3 
 
 
b. El transporte pasivo es la simple difusión de sustancias que pueden penetrar la 
membrana plasmática, como es el caso del O2 y el CO2. 
c. El transporte pasivo es el único mecanismo de transporte que no es mediado por 
transportadores. 
d. Las sustancias se difunden por su movimiento molecular aleatorio inherente (es 
decir, siguiendo el principio del movimiento browniano). 
e. La difusión a través de la membrana ocurre siempre y cuando ésta sea permeable al 
soluto. 
f. La velocidad neta de difusión (J) es proporcional al área de la membrana (A), la di- 
ferencia de la concentración del soluto (C1–C2) y la permeabilidad (P) de la mem- 
brana. 
g. La difusión se mide usando la formula J = PA (C1–C2). 
2. La difusión facilitadaes el transporte de una sustancia por una proteína transporta- 
dora en contra del gradiente de concentración. 
a. La difusión facilitada Se requiere para aquellos sustratos que no son permeables a la 
doble capa lipídica y es más rápida que la simple difusión. 
b. La difusión facilitada se utiliza para transportar una variedad de substancias necesa- 
rias para la supervivencia celular, incluyendo a la glucosa y aminoácidos. 
3. La ósmosis es el paso de agua a través de una membrana semipermeable debido a una 
diferencia en la concentración de agua. La ósmosis sigue los mismos principios que la 
difusión de cualquier soluto. 
a. Por ejemplo, si dos soluciones A y B son separadas por una membrana impermea- 
ble a solutos pero permeable al agua y A contiene una mayor concentración de 
solutos que B, existe una fuerza que impulsa el agua de B hacia A para equilibrar 
la diferencia en la concentración de agua. De este modo, el agua se mueve hacia la 
solución con mayor osmolalidad. 
b. La osmolalidad es la medición de la concentración total de discretas partículas de 
soluto en una solución y se mide en osmoles por kilogramo de agua. 
c. Al ser mucho más práctico medir el volumen que el peso de una solución fisioló- 
gica, la concentración de partículas de soluto suele expresarse como osmolari- 
dad, la cual se define en osmoles por litro. 
 
Osmolaridad = g × C 
donde 
g = a la cantidad de partículas en una solución (osm/mol) 
C = concentración (mol/L) 
d. Considere el siguiente ejemplo: ¿cuál es la osmolaridad de una solución de 0.1 mol/ 
L de NaCl (para NaCl, g = 2)? 
 
Osmolaridad = 2 osm/mol × 0.1 mol/L = 0.2 osm/L or 200 mosm/L 
 
e. Dos soluciones que tienen la misma osmolaridad se describen como isosmóticas. 
4. Una solución isotónica es aquella en la que el volumen de células contenidas en la 
misma no cambia, lo que implica que no hay movimiento de agua hacia el interior o 
exterior de la célula. 
a. En condiciones normales, una solución isotónica es isosmótica con líquido intra- 
celular, el cual es isosmótico con plasma (290 mosm/L). 
b. No todas las soluciones isosmóticas son isotónicas. Una solución de urea a 290 mM 
(milimolar) es isosmótica (290 mosm/L) pero no isotónica porque la urea es per- 
http://bookmedico.blogspot.com/
4 USMLE Road Map para Fisiología 
 
 
meable a través de la membrana celular y se difunde dentro de la célula. Esto causa 
una mayor concentración de urea dentro de la célula, induciendo un aumento del 
flujo de agua y por ende aumento del volumen celular. 
5. El transporte activo primario es aquél que lleva un sustrato a través de la membrana 
plasmática en contra de su gradiente de concentración. Requiere de energía celular 
en forma de ATP (trifosfato de adenosina) para hacerlo. 
a. Las proteínas que regulan el transporte activo primario se conocen como bombas, 
las cuales usan la energía derivada de la hidrólisis de ATP para impulsar el trans- 
porte del substrato a través del gradiente de concentración. 
b. El ejemplo más importante del transporte activo primario es la bomba de Na+/K+ o 
Na+/K+ ATPasa. Esta bomba utiliza la energía del ATP para expulsar Na+ y captar K+. 
c. Otro ejemplo del transporte activo primario es la Ca2+-ATPasa, la cual elimina Ca2+ 
del citoplasma. Estas bombas de Ca2+ se encuentran en el retículo endoplásmico 
(ER) y en la membrana plasmática. 
d. En las células parietales de las glándulas gástricas, la bomba de H-K media la ex- 
pulsión activa de H+ a través de la membrana apical, así como la captación de K+. 
6. El transporte acoplado o transporte activo secundario usa la energía de gradien- 
tes iónicos, por lo general el gradiente de Na+ dirigido hacia el interior, a través de la 
membrana plasmática. 
a. El transporte acoplado sigue trasladando sustratos en contra de su gradiente de con- 
centración, pero el transporte se deriva en forma indirecta por la energía almacenada 
en el gradiente de concentración de otro ión que es transportado en el mismo ciclo. 
b. Por ejemplo en el sistema de transporte acoplado a Na+, la concentración de Na+ es 
mayor en el espacio extracelular que en el citoplasma. Por lo tanto, el movimiento 
de este ión hacia el citosol está favorecido energéticamente. 
c. Los sistemas de transporte acoplado se dividen en dos grupos: cotransportadores 
(también llamados cotransportadores unidireccionales) que mueven solutos en la 
misma dirección e intercambiadores (también llamados contransportadores bidi- 
reccionales) que transportan solutos en la dirección contraria. Cotransportadores 
e intercambiadores trabajan sólo si ambos sustratos están presentes. 
d. Un ejemplo de cotransportador es el transportador de Na+-glucosa encontrado en el 
túbulo proximal renal y en el intestino delgado, lo que permite la absorción de glucosa. 
e. Un ejemplo de un intercambiador es el de Na+-Ca2+ encontrado en muchos tipos 
de células e importante en la regulación del Ca2+ citoplasmático. Transporta tres 
Na+ hacia adentro y un Ca2+ hacia fuera, haciéndolo un transportador electrógeno. 
Es electrógeno porque hace una pequeña contribución al potencial eléctrico a tra- 
vés de la membrana. 
 
ESTIMULANTES CARDÍACOS 
• La bomba de Na+ es el blanco del grupo natural de compuestos derivados de la flor silvestre Digitalis purpurea 
(dedalera). Estos compuestos se han usado como estimulantes cardíacos por casi dos siglos. 
• Estos glucósidos cardíacos, incluyendo la ouabaína y los digitálicos, inhiben la bomba de Na+/K+ ATPasa. 
 
II. Canales iónicos 
A. Los iones se mueven con rapidez a través de poros en las proteínas de las membranas bio- 
lógicas, a estos se les conoce como canales iónicos. 
B. Los iones fluyen a través de estos canales de un lado al otro de la membrana por sus gra- 
dientes electroquímicos. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CORRELACIÓN 
CLÍNICA 
http://bookmedico.blogspot.com/
Capítulo 1: Fisiología celular 5 
 
 
C. Los canales proteínicos se encuentran en uno de dos estados: abiertos o cerrados y se 
conocen como canales de compuerta. 
D. Los canales de compuerta permiten pasar a los iones de forma pasiva a través de la membrana. 
E. El mecanismo de compuerta de los canales iónicos controla la probabilidad que un canal 
esté en cualquiera de sus estados de conformación. 
1. Los potenciales de membrana son los que abren o cierran los canales activados por 
voltaje. Por ejemplo, un canal de Na+ regulado por voltaje está cerrado cuando el po- 
tencial de membrana se encuentra en reposo y abierto sólo cuando el potencial de 
membrana es despolarizado con rapidez. 
2. Los canales activados por ligandos son controlados sobre todo por la unión de ligandos 
extra e intracelulares a un canal proteínico. Estos canales se agrupan en tres categorías: 
a. En un complejo de canal de receptor directo, el receptor del ligando es parte de 
la proteína del canal. El receptor de nicotina acetilcolina (AchR) es un ejemplo 
de este tipo de canal. 
b. En un canal de compuerta de segundos mensajeros intracelulares, la unión de los 
ligandos a un receptor activa una cascada de moléculas de segundos mensajeros, una de 
las cuales se une a un canal proteínico para controlar la compuerta. El canal de com- 
puerta en un fotorreceptor de guanosina-monofosfato cíclico (cGMP) es un ejemplo. 
c. En un canal de compuerta directo de proteína G, la unión de una molécula a su 
receptor activa a la proteína reguladora de unión a guanosina-trifosfato (proteína 
G), la cual cambia la configuración del canal sin involucrar a sistemas de segundos 
mensajeros. Por ejemplo, el canal de potasio de flujo interno del corazón, KAch, que 
disminuye la frecuencia cardíaca tras un estímulo vagal, es regulado por la proteína G. 
F. Los canales iónicos pueden seleccionar un tipo de ión sobre otro. 
1. Los canales son nombrados de acuerdo con el tipo de ión que prefieren (p. ej. canal de 
Na+, de K+ y de Ca2+).2. La selectividad de ciertos canales regulados por voltaje aparentemente está dada por 
una región estrecha del poro en el canal, por la cual sólo cabe un ión en particular. 
G. Los canales iónicos proporcionan un blanco útil para la acción farmacológica. 
1. La lidocaína, un medicamento antiarrítmico, bloquea los canales de Na+ en una ma- 
nera dependiente del uso. 
2. A mayor frecuencia de estimulación (p. ej. frecuencia cardíaca), mayor bloqueo del 
canal por parte de la lidocaína. 
H. Los canales de iones se ven afectados en forma tanto directa como indirectamente por las 
enfermedades. 
1. Las acciones directas sobre la estructura del canal proteínico ocurren como resultado 
de mutaciones genéticas en el gen del canal. 
2. Las acciones indirectas incluyen anormalidades en el mecanismo regulador requerido 
para la función del canal y en el desarrollo de enfermedades autoinmunitarias. 
 
ENFERMEDADES DEL CANAL IÓNICO 
 
• La fibrosis quística es una enfermedad autosómica recesiva que afecta a uno en 2 500 individuos. Es un ejemplo 
del efecto directo sobre los canales iónicos. 
– La enfermedad es causada por mutaciones en el gen regulador transmembrana de la fibrosis quística (CFTR), el 
cual codifica para el canal de cloruro regulado por el monofosfato de adenosina cíclico (cAMP). 
– En la mayor parte de los casos, la deleción de una simple molécula de fenilalanina (pheD508) evita que el canal 
proteínico alcance la membrana plasmática. 
 
CORRELACIÓN 
CLÍNICA 
http://bookmedico.blogspot.com/
6 USMLE Road Map para Fisiología 
 
 
– La disminución drástica de los canales de cloruro resulta en la producción de una secreción mucosa espesa, la 
cual bloquea la vía respiratoria causando la muerte a 90% de los pacientes antes de llegar a la vida adulta. 
 
I. La regulación del volumen celular depende de la cantidad intracelular de solutos. 
1. Al encogerse la célula se activan los mecanismos que aumentan la concentración de 
solutos. 
a. Se consigue la activación ya sea por la síntesis de pequeñas moléculas orgánicas 
(es decir, con actividad osmótica, como sorbitol o taurina) o por transporte de iones 
dentro de la célula mediante el intercambiador de Na+ H+ o el cotransportador de 
Na+-H+-Cl–. 
b. Un aumento en la concentración de soluto dentro de la célula induce movimiento 
de agua por ósmosis, lo que aumenta el volumen celular. 
c. Dada la presencia en la célula de proteínas impermeables y con carga negativa, el 
movimiento osmótico del agua produce edema celular. 
2. En forma alternativa, si la célula presenta edema, se activan mecanismos de transporte 
para expulsar solutos de la célula (p. ej., canales de K+ o Cl2 o el cotransportador de 
K+-Cl2). 
3. Dados los mecanismos de transporte involucrados, la regulación del volumen celular 
depende en última instancia de los gradientes iónicos de Na+ y K+ generados por la 
bomba de Na+ K+. 
J. La regulación del pH celular a un nivel constante es crítica para la función celular. 
1. Los cambios en el pH celular pueden alterar la conformación de proteínas con grupos 
ionizables (incluyendo una variedad de enzimas y canales), lo que afecta su función. 
– 
2. Los mecanismos de transporte que acarrean H+ o HCO3 (bicarbonato) son impor- 
tantes para mantener el pH celular. Los transportadores incluyen un intercambiador 
de Na+-H+, el cual alcaliniza el citosol, y un intercambiador de K+-H+ en el epitelio 
corneal, que acidifica el citoplasma. 
K. El epitelio está constituido por planos de células especializadas que unen al cuerpo con el 
ambiente externo. 
1. El epitelio está polarizado a un nivel estructural, bioquímico y funcional. Esto signi- 
fica que un lado del epitelio contiene diferentes gradientes electroquímicos a través de 
sus membranas apicales y basolaterales. 
2. El transporte transepitelial se da en forma de secreción o absorción. Los solutos pueden 
cruzar la capa celular epitelial por movimiento a través de las células (vía transcelular) 
o por movimiento entre las mismas (vía paracelular). El epitelio se clasifica en compri- 
mido o permeable, dependiendo de la permeabilidad iónica en sus uniones paracelulares. 
3. Para comprender cómo ocurre la absorción a través de la capa epitelial de la célula hay 
que considerar el ejemplo de la absorción epitelial de Na+Cl– en el intestino delgado. 
a. La vía de entrada primaria de Na+ es por el lado apical y varía entre cada tejido. 
Puede ser por un canal de Na+ o un transportador como el intercambiador de Na+- 
H+ o por cotransportadores acoplados de Na+ (p. ej., Na-glucosa, Na-aminoácidos). 
Los canales de Na+ en la membrana apical son miembros de la familia de los cana- 
les de Na+ sensibles a amilorida. 
b. El flujo de salida de Na+ a través de la membrana basolateral está a cargo de la 
bomba de Na+/K+. Por lo tanto, el sodio que entra del lado apical es secretado en el 
lado basolateral, lo que resulta en el transporte neto del mismo a través del epitelio. 
c. El Cl– sigue al Na+ en su movimiento a través de epitelio por medio de la vía trans- 
celular o paracelular, dependiendo del tejido. 
http://bookmedico.blogspot.com/
Capítulo 1: Fisiología celular 7 
 
 
(1) La vía transcelular se refiere al movimiento de iones a través de las capas celula- 
res mientras que la vía paracelular se refiere al movimiento iónico entre las células. 
(2) La fuerza que produce el movimiento de Cl– a través de la vía paracelular es el 
potencial eléctrico generado por el movimiento neto de Na+ (positivo en el lado 
basolateral). 
(3) En forma alternativa, si el Cl– cruza el epitelio por la vía transcelular, por lo ge- 
neral entra por el lado apical a través de transportadores (p. ej., intercambiador 
2 + + − Cl− HCO3 , cotransportador Na -K -2Cl ) y deja la célula del lado basolate- 
ral a través de los canales Cl- o el cotransportador K+-Cl–. 
d. La actividad de la Na+/K+-ATPasa en el lado basolateral resulta en el transporte de 
iones de K+ al interior de la célula. Por lo tanto, para mantener un estado estable en 
la concentración de iones en el citosol, la célula debe de tener un mecanismo para 
reciclar el K+ bombeado. Este mecanismo involucra una variedad de canales de K+ 
localizados en el lado basolateral de la membrana. 
4. La secreción es conceptualmente más difícil que la absorción, pero aplican los mismos 
principios descritos para ésta. 
a. La Na+/K+ ATPasa en el lado basolateral de la membrana bombea Na+ hacia afuera 
y K+ hacia adentro de la célula. El K+ es reciclado de vuelta al líquido extracelular 
por medio de la acción de los canales de K+ en el lado basolateral de la membrana. 
b. El gradiente de Na+ generado por la Na+/K+ ATPasa es utilizado para mover el co- 
transportador de Na+-K+-2Cl- (o K+-Cl−) al lado basolateral de la membrana, resul- 
tado en el transporte neto de Cl− dentro de la célula. 
c. El aumento intracelular en la concentración de Cl− causa una secreción de Cl− a tra- 
vés de los canales de Cl− en el lado apical de la membrana, resultando en transporte 
neto del mismo a través de la capa epitelial de la célula. 
d. La combinación de secreción de Cl− dentro de la luz (lado apical) y el flujo de salida 
de K+ por los canales de K+ en el lado basolateral de la membrana resulta en un po- 
tencial transepitelial que es más negativo en el lado luminal. Este potencial negativo 
produce el movimiento de Na+ a través de la vía paracelular hacia la luz. 
5. Las células epiteliales pueden absorber o secretar solutos al insertar canales específicos 
o transportadores en el lado apical o basolateral de la membrana. 
L. La regulación intracelular de calcio desempeña un papel fisiológicamente im- 
portante en la señalización y regulación en varios procesos celulares. Las células 
han desarrollado mecanismos para controlar los niveles y señales de Ca2+. 
1. La señalización del Ca2+ en el citoplasma ocurre cuando se produce un aumento en 
los niveles de Ca2+, lo que activa proteínas unidas al Ca2+y transduce la señal de éste 
en una respuesta celular. Por lo tanto, es necesario mantener bajos los niveles cito- 
plásmicos de Ca2+ para la señalización del mismo. 
2. Existe un gradiente de concentración 20 000 veces mayor para el Ca2+ a través de la 
membrana plasmática. Además, las células contienen reservas intracelulares de Ca2+ que 
son secuestradas en el ER, el cual contiene concentraciones elevadas de Ca2+. La señali- 
zación de Ca2+ ocurre al existir un aumento en los niveles citoplásmicos de Ca2+ por un 
aumento en la liberación de Ca2+ del ER o flujo de Ca2+ desde el espacio extracelular. 
3. Las células mantienen bajos los niveles citoplásmicos de Ca2+ al expulsar Ca2+ fuera de 
la célula usando la Ca2+-ATPasa, la bomba de Na+-Ca o secuestrando Ca2+ hacia el ER 
utilizando la Ca2+-ATPasa del mismo. 
4. Las células incrementan los niveles citoplásmicos de Ca2+ en respuesta a señales 
primarias, como de hormonas o factores de crecimiento. 
http://bookmedico.blogspot.com/
8 USMLE Road Map para Fisiología 
 
 
a. Una vez que la señal primaria es recibida, los canales de Ca2+ en la membrana del 
ER o del citosol se abren, liberando Ca2+ dentro del citoplasma transduciendo la 
señal primaria en una respuesta celular. 
b. Los canales en la membrana del ER que regular la liberación de Ca2+ incluyen el 
receptor 1,4,5 trifosfato de inositol (IP3) y el receptor de rianodina. 
c. El influjo de Ca2+ desde el espacio extracelular está mediado por diferentes clases 
de canales, incluyendo los de compuerta de moléculas (como AchR) y los de com- 
puerta de voltaje (como los canales de Ca2+ en el músculo cardíaco). 
 
ENFERMEDADES ASOCIADAS CON DEFECTOS EN LA REGULACIÓN DEL CALCIO 
 
• La hipertermia maligna es un trastorno genético en el cual los individuos afectados reaccionan en forma anor- 
mal a anestésicos volátiles, sobre todo al halotano y a relajantes musculares como el carbacol. 
– La hipertermia maligna se da por mutaciones en el receptor de rianodina produciendo un receptor hiperreac- 
tivo. El receptor mutado de rianodina es especialmente sensible a los anestésicos mencionados, lo que resulta en 
un incremento de la liberación del calcio e hipertermia, así como en contractura muscular sostenida (rigidez). 
– Si no se trata sobreviene acidosis láctica y respiratoria, seguida de necrosis celular muscular extensa, lo que 
produce hiperpotasiemia, arritmias cardíacas y a fibrilación ventricular a menudo letal. 
– Los niveles altos de Ca2+ también provocan una activación continua de la Ca2+-ATPasa del retículo endoplás- 
mico (ER) e hidrólisis del ATP, lo que resulta en un aumento en la producción de calor e hipertermia. 
– El ejercicio vigoroso también puede provocar contracturas musculares anómalas en individuos con hiperter- 
mia maligna. 
– El tratamiento con dantroleno inhibe el receptor de rianodina y la contractura muscular descontrolada. 
• La enfermedad de Brody es una mutación autosómica recesiva de la Ca2+-ATPasa del ER, la cual lleva a relaja- 
ción del músculo esquelético inducida por el ejercicio. 
• La enfermedad de Darier es una alteración en la piel debida a una mutación en la Ca2+-ATPasa del ER que 
conduce a la rotura del citoesqueleto en las células de la piel y a pérdida de la adhesión entre ellas. 
• La ceguera nocturna congénita estacionaria ligada al X es una enfermedad recesiva de la retina humana pro- 
vocada por mutaciones en los canales con compuerta de voltaje de Ca2+, lo que produce defectos en la libe- 
ración de glutamato y en su neurotransmisión, lo que deshabilita la función de los conos y bastones en la retina. 
• El síndrome miasténico de Lambert-Eaton (LEMS) es una enfermedad autoinmunitaria caracterizada por un 
incremento en la cantidad de anticuerpos de LEMS contra los canales de Ca2+ presinápticos, lo que provoca un 
defecto en la neurotransmisión y debilidad de los músculos de las extremidades. La estimulación repetida de los 
músculos afectados lleva a un aumento en los potenciales de acción y al fortalecimiento muscular. 
 
III. Señalización celular 
A. Tipos de señalización celular 
1. La señalización autocrina involucra una sustancia secretada que actúa sobre la 
misma célula que la produjo. Algunos ejemplos son aminoácidos, esteroides y 
polipéptidos. 
2. La señalización paracrina involucra una sustancia que se difunde de la célula que la 
produjo para actuar en células blanco cercanas y producir una respuesta. Por ejem- 
plo, el péptido regulador gastrointestinal somatostatina, es producida por las células D 
en el estómago y difunde hacia las células acidas gástricas para reducir la secreción. 
3. La señalización endocrina involucra una sustancia secretada por células endocrinas 
que es transportada por la sangre a células blanco lejanas para producir una res- 
puesta. Por ejemplo, la hormona adrenocorticotrópica, que es liberada de la hipófisis 
anterior hacia la sangre, estimula la corteza suprarrenal para la liberar cortisol. 
4. La señalización neurocrina involucra la liberación de neurotransmisores en la unión 
sináptica de células nerviosas que actúan en células posinápticas. 
 
 
 
 
 
 
 
 
 
 
 
CORRELACIÓN 
CLÍNICA 
http://bookmedico.blogspot.com/
Capítulo 1: Fisiología celular 9 
 
 
B. Eventos de la señalización celular 
1. La célula señalizadora produce una molécula de señalamiento que se denomina li- 
gando (una molécula que se une a otra generalmente más grande) o mensajero pri- 
mario, la cual se une a un receptor asociado con la célula blanco. 
2. La unión de ligandos resulta en un cambio conformacional y en la activación del 
receptor. 
3. El receptor activado produce una respuesta en la célula blanco directa o indirectamente 
a través de la producción de una señal secundaria llamada segundo mensajero. 
a. Las respuestas de las células blanco incluyen alteraciones en el metabolismo celular 
y alteraciones en la transcripción genética. 
b. Ejemplos de segundos mensajeros son cAMP, DAG (diacilglicerol) e IP3. 
c. La unión de hormonas a la proteína G resultan en activación de la fosfolipasa C, la 
cual cataliza 4,5-difosfato de fosfatidilinositol para formar IP3 y DAG. 
c. Tipos y clases de receptores 
1. Los receptores intracelulares localizados en el citoplasma o el núcleo de las células 
blanco están unidos por ligandos lipofílicos, los cuales se difunden por las membra- 
nas de las células blanco. 
a. La unión de ligandos altera la conformación del receptor exponiendo el dominio 
en la unión del DNA. 
b. Los receptores unen elementos promotores específicos genéticos que activan la trans- 
cripción de genes específicos y que resultan en la síntesis de proteínas específicas. 
c. Un ejemplo es un receptor de estrógenos en el músculo liso del útero. 
2. Hay cuatro tipos de receptores de superficie celular (fig. 1-2): 
a. Los receptores colinérgicos nicotínicos que están unidos a canales iónicos con 
compuerta de ligandos que son selectivamente permeables a aniones y cationes 
particulares (p. ej., AchR nicotínicos en los miocitos). 
b. Los receptores catalíticos son proteínas transmembrana que tienen una actividad 
enzimática intrínseca (p. ej., serina o cinasa de tirosina). 
c. Otros receptores están unidos a proteínas con actividad enzimática. 
(1) Estos receptores no tienen actividad catalítica por sí solos. 
(2) Un ejemplo es la señalización del receptor de una citosina a través del cito- 
plasma de la cinasa de tirosina (p. ej, el sistema JAK/TYK-STAT). 
d. Los receptores unidos a proteína G tienen un dominio extracelular de unión a 
ligandos y un dominio intracelular de unión a las proteínas g. (fig. 1-3). 
(1) Después de la unión con ligandos los receptores interactúan con la proteína G. 
(2) Las proteínas G son heterodiméricas y consisten en subunidades ,, í y y que 
se disocian. 
(3) Las proteínas G (subunidades α) que se unen a GTP interactúan y activan en- 
zimas específicas unidas a la membrana, las cuales forman segundosmensajeros 
que producen una respuesta en las células blanco. 
(4) Un ejemplo es el sistema de ciclasa de adenilato. 
 
ENFERMEDADES INDUCIDAS POR ERRORES DE SEÑALIZACIÓN CELULAR 
 
• Cólera 
– Las toxinas del cólera alteran a la proteína G, por lo que al trifosfato de guanosina (GTPasa) le impiden hidro- 
lizar GTP, resultando en una prolongada estimulación de ciclasa de adenilo y un aumento en la producción de 
cAMP. 
– El aumento del cAMP en las células epiteliales intestinales resulta en la secreción masiva de agua y electrólitos 
en el intestino, resultando en diarrea grave y deshidratación. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CORRELACIÓN 
CLÍNICA 
http://bookmedico.blogspot.com/
3 
10 USMLE Road Map para Fisiología 
 
 
 
 
 
 
 
 
Hormona Receptor 
 
 
Meembbraanna 
 
 
Ciclasa de adenilato 
 
ATP PPi 
 
 
AMP cíclico 
 
 
 
Enzima intracelular 
 
 
 
 
 
Efectos biológicos 
 
Figura 1-2. Ejemplos de receptores celulares de superficie. 
 
 
 
 
 
 
 
Exterior 
NH + 
E1 E2 E3 E34 
 
 
 
 
Citosol 
Hélice α 
transmembrana 
 
C1 C2 C3 
 
COO– 
C4 
 
 
Figura 1-3. Todas las proteínas del receptor acoplado a proteína G 
atraviesan la membrana siete veces. Los siete grupos de aminoácidos dentro 
de la membrana plasmática representan las porciones hidrófobas de las 
hélices α. Los dominios exteriores se identifican como E1–E4. Las asas 
citoplásmicas se identifican como C1–C4. Los aminoácidos de la tercer asa 
citoplásmica cerca del carbono terminal interactúan con las proteínas G. 
http://bookmedico.blogspot.com/
Capítulo 1: Fisiología celular 11 
 
 
• Seudohipoparatiroidismo 
– El seudohipoparatiroidismo resulta de una deficiencia de proteína G y disminuye los niveles de cAMP. 
– Los pacientes presentan síntomas de hipoparatiroidismo con niveles de hormona paratiroidea normales o li- 
geramente elevados. 
• Tosferina 
– La toxina Pertussis bloquea la actividad de G1, permitiendo a la ciclasa de adenilato mantenerse activa y así 
incrementar el cAMP. 
 
IV. Potencial de membrana 
A. El potencial de membrana es la diferencia en el potencial eléctrico (voltaje) entre el exte- 
rior e interior de la superficie de la membrana bajo condiciones de reposo. 
B. Las células tienen un exceso de cargas negativas en la parte interna de la mem- 
brana celular y exhiben potencial negativo en la membrana en estado de reposo. 
1. Como la concentración de K+ dentro de la célula es mayor que en el exterior, el K+ 
se mueve fuera de la célula, dejando un exceso de cargas negativas en el interior de la 
membrana celular. 
2. La bomba de Na+/K+ actúa como un segundo factor para generar cargas negativas en el 
interior de la membrana al bombear tres Na+ fuera y dos K+ dentro. 
3. El flujo de salida de K+ es el principal encargado del potencial en reposo de la mem- 
brana. 
C. El potencial de equilibrio es la capacidad de la membrana de ser selectivamente permea- 
ble a un ión, causando su distribución a través de la membrana para estar en equilibrio. 
1. La ecuación de Nernst describe la relación entre un gradiente de concentración de 
un ión y su potencial de equilibrio. Así, la magnitud del potencial en equilibrio puede 
calcularse por esta ecuación: 
 
 
 
 
donde 
E = 
RT 
FZ 
 
In 
Co
 
Ci 
E = potencial de equilibrio (voltios) 
R = constante de gas 
T = temperatura absoluta 
F = constante de Faraday (2.3 × 104 cal/V/mol) 
Z = valencia del ión (+1 para Na+, +2 para el Ca2+) 
In = logaritmo base 10 
Co = concentración externa del ión con carga positiva 
Ci = concentración interna del ión con carga positiva 
 
2. En las neuronas espinales, el potencial de membrana en reposo es −70 mV, lo cual 
es similar al potencial de equilibrio del K+, siendo éste de −90 mV. Por lo tanto, las 
membranas neuronales son selectivamente permeables al K+. 
3. La ecuación de Nernst predice que el potencial de equilibrio del K+ será negativo por- 
que K0 es menor que Ki. También predice que el potencial de equilibrio del Na
+ será 
positivo porque Na0 es mayor que Na i. 
4. Debido a que la membrana es más permeable al K+ y al Cl−, el potencial de membrana 
de la mayor parte de las células es de −70mV. 
D. El potencial de membrana en reposo es la diferencia de potencial a través de la mem- 
brana celular expresada en milivoltios. 
http://bookmedico.blogspot.com/
P
o
te
n
c
ia
l 
d
e
 m
e
m
b
ra
n
a
 (
m
v
) 
12 USMLE Road Map para Fisiología 
 
 
1. El potencial de membrana en reposo se establece por la diferencia de permeabilida- 
des o conductancias de iones permeables. 
a. Por ejemplo, el potencial de membrana en reposo de las células nerviosas es más 
permeable al potasio que al sodio. 
b. Los cambios en la conductancia de iones alteran las corrientes, lo cual cambia el 
potencial de membrana. 
c. La hiperpolarización es un incremento en el potencial de membrana en que el 
interior de la célula se vuelve más negativo. 
d. La despolarización es un decremento en el potencial de membrana en que el inte- 
rior de la célula se vuelve más positivo. 
2. Un potencial de acción es un descenso rápido y masivo del potencial de membrana 
(es decir, despolarización) (fig. 1-4). 
a. Los potenciales de acción ocurren habitualmente por un incremento en la conduc- 
tancia de los iones de Na+, Ca2+ y K+. 
b. El umbral es el potencial de membrana que induce un incremento en la conduc- 
tancia de Na+ para crear un potencial de acción. 
c. La despolarización produce la abertura de los canales de Ca2+ tras la abertura rápida 
de las compuertas de activación y el cierre lento de las compuertas de inactivación. 
d. El cierre de las compuertas de inactivación resulta en el cierre de los canales de 
Na+ y la disminución en la conductancia de Na+. 
e. La abertura lenta de los canales de K+ aumenta más la conductancia de éste que la 
del sodio, lo que resulta en la repolarización del potencial de membrana. 
f. La repolarización es el regreso del potencial de membrana a su valor original por el 
movimiento hacia fuera del K+. 
3. El período refractario es el período en donde la célula es resistente a un segundo po- 
tencial de acción. 
4. Durante el período refractario relativo sólo algunos de los canales de Na+ inactivados 
son reiniciados y los canales de K+ siguen abiertos. Sin embargo, puede iniciarse otro 
potencial si el estímulo es lo suficientemente fuerte. 
 
 
 
50 
Sobrelímite 
 
 
0 
Despolarización 
 
 
Repolarización 
 
 
–50 
Umbral 
 
 
 
–100 
Reposo 
 
 
Tiempo 
Reposo 
 
Figura 1-4. Potenciales de acción. 
http://bookmedico.blogspot.com/
Capítulo 1: Fisiología celular 13 
 
 
 
5. Para la propagación de un potencial de acción se requiere de un sistema que regenere 
un potencial de acción a lo largo del axón. 
a. La velocidad de conducción se incrementa si aumenta el tamaño de las fibras y la 
mielinización y es dependiente de la magnitud de la corriente despolarizante. 
b. Las fibras mielinizadas exhiben una conducción saltante donde el potencial de acción 
brinca de nodo a nodo donde se congregan los canales de Na+ con compuerta de voltaje. 
6. El bloqueo en la despolarización ocurre cuando un estímulo despolarizante sucede 
lentamente para que los canales de Na+ puedan inactivarse antes de que más canales 
de sodio lo hagan. Así, aunque el potencial de membrana exceda el umbral, no se pro- 
duce ningún potencial de acción. 
7. El envenenamiento por organofosfatos ocurre tras la despolarización en bloque de 
las uniones neuromusculares, con lo que se inhibe la esterasa de acetilcolina (AchE), 
evitando la rotura de moléculas de acetilcolina. 
V. Estructura del músculo esquelético 
A. El músculo esquelético está organizado en unidades anatómicas progresivamente más pe- 
queñas y se contrae en respuesta a la transmisión sináptica neuromuscular. 
B. Las fibras musculares están rodeadas por una membrana plasmática que suelellamarse 
sarcolema. 
C. Las fibras musculares están compuestas por un grupo de estructuras fibrosas llamadas 
miofibrillas y cada una de éstas es un arreglo lineal de estructuras repetidas llamadas sar- 
cómeros, que consisten de filamentos menores llamados miofilamentos. 
D. Los sarcómeros son la unidad contráctil fundamental del músculo esquelético y se caracteri- 
zan por su apariencia altamente ordenada bajo un microscopio de luz polarizante (fig. 1-5). 
1. Los filamentos gruesos en la banda A están compuestos sobre todo por la proteína 
miosina. 
a. Cada molécula de miosina está compuesta por seis monómeros: dos cadenas de 
proteínas intercaladas en forma helicoidal (denominadas cadenas pesadas) y cua- 
tro proteínas globulares más pequeñas (denominadas cadenas ligeras de miosina). 
Existen dos cadenas de luz esenciales y dos cadenas de luz reguladoras de miosina. 
b. Cada cadena pesada esta asociada a una cabeza globular. Las dos cabezas globu- 
lares de las cadenas pesadas de miosina pueden hidrolizar ATP a ADP y fosfato 
inorgánico y también tienen la habilidad intrínseca para interactuar con actina. 
c. La región tipo bastón (o cola) estabiliza la proteína y tiende a autoagregarse en 
forma espontánea formando un filamento grueso. 
d. El tratamiento con la enzima proteolítica tripsina separa la miosina en dos compo- 
nentes, meromiosina pesada y meromiosina ligera. Otra enzima proteolítica, la 
papaína, separa la meromiosina pesada en una proteína globular S1 y en una pro- 
teína tipo bastón S2. 
e. Las zonas sensitivas a la digestión proteolítica son zonas que permiten flexionar una 
molécula y se llaman regiones en bisagra. 
2. Los filamentos delgados están compuestos de tres proteínas primarias: actina, tropo- 
miosina y troponina. 
a. La actina puede encontrarse en dos estados: actina G globular y actina F filamentosa. 
b. La actina G se polimeriza para formar actina F. 
c. Cada monómero de actina G contiene sitios de unión para miosina, tropomiosina 
y troponina I. 
d. La estructura básica del filamento delgado consiste en dos bandas intercaladas de 
actina F en un disposición helicoidal doble. 
http://bookmedico.blogspot.com/
14 USMLE Road Map para Fisiología 
 
 
 
 
Banda I Banda A Banda I 
 
Línea Z 
 
 
 
 
 
 
 
 
 
Corte 
transversal 
 
 
Línea M 
 
Zona H 
 
Filamentos 
delgados 
Filamentos 
gruesos 
 
Figura 1-5. Estructura de los sarcómeros. Las bandas A contienen filamentos gruesos. 
Las bandas I contienen filamentos delgados, que se adhieren y se extienden desde la 
línea Z. La línea Z mantiene el espaciado regular de los filamentos delgados dentro de 
los sarcómeros. El espacio entre las terminaciones de los filamentos delgados se llama 
zona H y al área más densa dentro de la zona H se le denomina línea M. 
 
 
 
e. La tropomiosina es una proteína alargada que descansa entre dos ranuras formadas 
por la doble cadena de actina F (fig. 1-6). 
f. Cada filamento delgado contiene entre 40 y 60 moléculas de tropomiosina. 
g. La troponina es un complejo de tres proteínas diferentes: 
(1) La troponina T une las otras dos subunidades de troponina a tropomiosina. 
(2) La troponina C une Ca2+, el paso regulador crucial en la contracción muscular, 
y está estrechamente relacionada con otra proteína de unión del Ca2+. 
(3) Cada molécula de troponina C en el músculo esquelético tiene dos lugares alta- 
mente afines al Ca2+ que participan en la unión de la troponina C al filamento 
delgado. 
(4) La troponina I está encargada de la conformación inhibidora del complejo tro- 
pomiosina-troponina observada en ausencia de Ca2+. La troponina I se une a la 
actina y previene la contracción. 
3. Los túbulos, una red tubular, están localizados en las uniones de las bandas A y las 
bandas I y contienen una proteína llamada receptor de dihidropiridina. 
4. El retículo sarcoplásmico (SR) es el lugar de almacenamiento del Ca2+ cerca de los 
túbulos transversos (túbulos T). Contiene un canal liberador de Ca2+ conocido como 
receptor de rianodino. 
E. Varios mecanismos están involucrados en la mecánica de la contracción muscular: 
1. Los potenciales de acción en la membrana celular del músculo causan la despolariza- 
ción de los túmulos T, los cuales abren los canales liberadores de Ca2+ en el SR e incre- 
mentan el Ca2+ intracelular. 
2. El Ca2+ elimina la influencia inhibidora de la troponina-tropomiosina para descubrir 
los lugares activos en cada monómero de actina G. 
http://bookmedico.blogspot.com/
Capítulo 1: Fisiología celular 15 
 
 
 
 
Filamento de actina Sitio de unión 
Tropomiosina 
 
 
 
 
 
 
 
 
Filamento de miosina 
Troponina del calcio Sitio activo Actina 
 
 
 
 
 
Cabeza Sitio de unión 
de la actina 
Sitio de unión 
de ATP 
 
 
Cola 
 
Meromiosina pesada Meromiosina ligera 
 
Figura 1-6. Estructura de los filamentos delgados. 
 
 
3. Las cabezas globulares de miosina que sobresalen del filamento grueso se unen a los 
lugares activos de actina G y forman puentes cruzados. 
4. Las fuerzas intramoleculares (energía almacenada) dentro de las moléculas de miosina 
permiten a ésta flexionarse en las llamadas regiones bisagra. Estas áreas son las dos re- 
giones sensibles a las enzimas proteolíticas en la molécula de miosina. La acción flexible 
de las moléculas de miosina hace que las cabezas globulares (todavía unidas a la actina) 
se inclinen hacia el centro del sarcómero. Este movimiento, llamado golpe de poten- 
cia, crea tensión que resulta en el acortamiento de los sarcómeros individuales. 
5. Inmediatamente después de la inclinación se rompen los puentes cruzados y las cabe- 
zas globulares regresan de nuevo a su posición erguida. 
6. En este paso se puede formar un nuevo puente cruzado si el ATP y Ca2+ están disponi- 
bles cerca de los filamentos gruesos y delgados. En ausencia de Ca2+, la formación de 
puentes cruzados en imposible. 
7. La relajación ocurre cuando la captación de Ca2+ hacia el SR disminuye el Ca2+ intracelular. 
F. Músculo cardíaco 
El mecanismo regulador del músculo cardíaco es similar al del músculo esquelético, ex- 
cepto que la troponina C del músculo cardíaco sólo tiene un sitio de unión afín al Ca2+. 
G. Los eventos bioquímicos que ocurren durante el ciclo de contracción del múscu- 
lo esquelético involucran al complejo activo y al complejo de rigor. 
1. La miosina con ATP acoplada (complejo miosina-ATP) tiene una baja afinidad por los 
sitios activos de actina g. Cuando el Ca2+ se une a la troponina y la tropomiosina, esta 
última gira fuera del camino para que los sitios activos de actina G sean descubiertos. 
La miosina-ATP se hidroliza en forma simultánea a miosina-ADP, la cual tiene una 
afinidad muy alta por los sitios activos de actina g. En consecuencia, se forma un 
complejo activo o un puente cruzado entre la actina y la miosina-ADP. 
2. El ADP es liberado de la miosina y las cabezas globulares se inclinan hacia el centro 
del sarcómero produciendo tensión. En este punto, el complejo riguroso se forma 
entre la actina y la miosina. 
http://bookmedico.blogspot.com/
16 USMLE Road Map para Fisiología 
 
 
3. El ATP se une entonces a la miosina y el complejo miosina-ATP rompe los puentes 
cruzados y las cabezas globulares se pegan de regreso a la posición derecha. 
4. El ciclo esta listo para comenzar otra vez en la presencia de Ca2+. 
5. Las reservas de ATP son bajas por lo que la célula debe de regenerar ATP para la con- 
tracción muscular. 
H. El músculo esquelético entra a un estado de rigidez prolongada denominado rigidez ca- 
davérica en la muerte. 
1. La rigidez cadavérica ocurre porque al morir las células no son capaces de sintetizar ATP. 
2. En ausencia de ATP los puentes cruzados entre miosina y actina no pueden disociarse. 
3. Después de 15 a 25 h, las enzimas proteolíticas liberadas por los lisosomas comienzan 
a romper la actina y la miosina. 
I. La longitud muscular influencia el desarrollo de la tensión muscular al determinarla cantidad de superposición entre los filamentos de actina y miosina. 
1. En una contracción isométrica, la longitud del músculo es constante durante el de- 
sarrollo de la fuerza. Así, un estímulo aumenta la tensión pero no el acortamiento. Un 
ejemplo sería un individuo empujando contra un objeto inmovible, como la pared de 
una casa. 
2. En una contracción isotónica, el músculo se acorta mientras ejerce una carga o fuerza 
constante. Un ejemplo sería un individual levantando un vaso de agua hacia su boca. 
3. La tensión que un músculo estimulado produce cuando se contrae en forma isomé- 
trica es la tensión total. 
4. La tensión medida antes de la contracción muscular se conoce como tensión pasiva. 
La diferencia entre los dos valores es la tensión producida por el proceso contráctil, la 
tensión activa (fig. 1-7). 
5. Si el músculo es estimulado para contraerse a una longitud fija, se desarrolla tensión 
activa por el ciclo de puentes cruzados. La cantidad de tensión activa desarrollada es 
proporcional al número de puentes cruzados formados. 
6. La tensión disminuye cuando el sarcómero se acorta hasta un punto donde los fila- 
mentos delgados se superponen y evitan que el otro forme puentes cruzados con la 
miosina. 
7. Así, la tensión isométrica producida depende del grado de superposición de los 
filamentos gruesos y delgados, lo que dicta el número de puentes cruzados que se 
pueden formar. 
J. La relación fuerza-velocidad se refiere a la relación entre la carga (o peso) puesta en un 
músculo y la velocidad a la cual el músculo se contrae mientras se levanta la carga. 
1. La velocidad se refiere a la distancia que un objeto se mueve por unidad de tiempo. La 
carga se puede pensar como el peso que un músculo pretende mover durante una con- 
tracción isotónica, como por ejemplo, cuando se trata de levantar una serie de pesas 
progresivamente más pesadas. 
2. Un músculo se contrae más rápidamente sin una carga. A mayores cargas, sin embargo, 
la velocidad de acortamiento es menor, porque más puentes cruzados están activos al 
mismo tiempo. 
3. Cuando el peso iguala la máxima cantidad de fuerza que el músculo puede generar, 
la velocidad se vuelve cero. En este caso, la contracción se vuelve isométrica (p. ej., el 
músculo se contrae pero no se acorta). 
K. La unidad funcional del músculo es un grupo de células musculares inervadas por una 
sola neurona motora llamada unidad motora. 
http://bookmedico.blogspot.com/
 
Tensión total 
 
Tensión activa 
 
 
 
 
 
Tensión pasiva 
 
T
e
n
si
ó
n
 
m
u
sc
u
la
r 
Capítulo 1: Fisiología celular 17 
 
 
 
 
 
 
 
 
 
1 
Ajustar 
3 
Medir la 
tensión 
la longitud 
del músculo 
 
2 
Estimular 
 
 
0.5X 1X 2X 
Longitud del sarcómero 
(X=~2.0µ) 
 
Figura 1-7. La relación longitud-tensión es la relación entre la longitud del músculo 
y la cantidad de tensión activa o pasiva en el músculo. La tensión activa se refiere a 
la tensión generada por las fuerzas contráctiles cuando el músculo es estimulado, 
mientras que la tensión pasiva se refiere a la fuerza elástica que actúa en el músculo 
cuando éste se estira. La tensión total es la suma de las tensiones activa y pasiva. 
 
 
1. La unidad motora consiste de una neurona motora, su axón y todas las células mus- 
culares inervadas por la neurona motora. En los adultos, cada fibra muscular es iner- 
vada por un solo axón motor. 
2. En general, las unidades motoras en músculos pequeños que responden a estimula- 
ciones rápidas y con funciones que requieren control fino tienen un número bajo de 
fibras musculares. Un ejemplo es el músculo laríngeo, en el cual una unidad motora 
tiene alrededor de dos a tres fibras musculares por neurona motora. 
3. Por el contrario, las unidades motoras en músculos grandes con función que no 
requiere de un control fino tienden a tener mayor número de fibras musculares. Un 
ejemplo es el gastrocnemio, en el cual la unidad motora tiene cerca de 500 fibras 
musculares por neurona motora. 
4. Como todas las células musculares en una unidad motora se contraen de manera con- 
junta, la unidad fundamental de contracción de un músculo es la producida por la 
unidad motora. 
5. El desarrollo del incremento en la tensión muscular del músculo esquelético se da por: 
a. La suma de onda (p. ej., aumento de la frecuencia del estímulo por una sola neu- 
rona motora). 
b. La suma o reclutamiento de unidades motoras. Además del aumento en el desarro- 
llo de la tensión, el reclutamiento permite que el movimiento sea continuo y suave 
y se da porque las diferentes unidades motoras se activan de forma asincrónica; es 
decir, mientras una unidad motora se contrae otra está en reposo. 
L. Una contracción puede ser única y breve o constante por una excitación continua de las 
fibras musculares. 
1. Un evento contráctil simple o único (p. ej., espasmo) se inicia por un potencial de ac- 
ción único que llega a la unión neuromuscular. 
http://bookmedico.blogspot.com/
18 USMLE Road Map para Fisiología 
 
 
2. Si se aplica un estímulo múltiple antes de que las fibras musculares en la unidad mo- 
tora se hayan relajado, la fuerza desarrollada puede aumentar por la suma de múltiples 
estímulos simples o espasmos al mismo tiempo. 
a. La suma de contracciones ocurre cuando la frecuencia del estímulo alcanza 10 por 
segundo. Mientras la frecuencia del estímulo aumenta, el desarrollo de la fuerza 
continua sumándose hasta que se obtiene una fuerza máxima desarrollada. 
b. En este punto, las contracciones individuales ocurren tan cerca una de otra que se 
unen para formar una sola curva uniforme llamada contracción tónica (fig. 1-8). 
c. La contracción tónica ocurre en el músculo esquelético porque el período refrac- 
tario (es decir, el período en que el tejido no responde a un segundo estímulo) es 
corto en relación con el tiempo de contracción y la fuerza puede incrementarse 
por la suma de contracciones de múltiples fibras. 
d. En el músculo cardíaco, el incremento en la entrada de Ca2+ refuerza la fuerza 
contráctil. 
VI. Transmisión neuromuscular y sináptica 
A. La actividad de varios grupos de músculo esquelético está controlada por el sistema 
nervioso central a través de la innervación de fibras musculares individuales. 
B. Cada nervio motor envía procesos a cada fibra muscular en la unidad motora. 
C. El lugar donde el nervio motor está en contacto con la superficie de la fibra muscular se 
conoce como unión neuromuscular o placa terminal motora (fig. 1-9). 
D. La invaginación del sarcolema de la fibra muscular forma un surco sináptico. 
E. El espacio entre el axón terminal y el sarcolema invaginado se llama hendidura sináptica. 
F. Las células de Schwann por lo general se encuentran en la placa motora terminal y pue- 
den aislar la hendidura sináptica del espacio extracelular. 
G. El neurotransmisor acetilcolina está almacenado en vesículas sinápticas localizadas en 
el axón terminal. 
 
 
 
 
Contracción tetánica 
 
 
Fuerza contráctil 
 
 
 
 
 
Estímulo 
 
 
Figura 1-8. Registro de la fuerza contráctil durante una contracción 
aislada (izquierda) y una contracción tetánica (derecha) del músculo 
esquelético. Una contracción aislada es una contracción muscular 
breve que ocurre en respuesta a un único estímulo del umbral. La 
contracción tónica o tetánica es la contracción constante del músculo 
esquelético debido a excitación continua de las fibras musculares. 
http://bookmedico.blogspot.com/
Capítulo 1: Fisiología celular 19 
 
 
 
 
 
Neurona motora 
 
Mielina 
 
 
Calcio 
 
Canales 
de calcio 
 
 
Vesículas 
secretoras 
 
 
 
Acetilcolina 
 
 
Membrana 
del miocito 
 
 
 
Sodio 
 
Hendidura 
sináptica 
 
Acetilcolinesterasa Receptor 
 
 
 
 
 
Despolarización 
 
Calcio 
Cisterna 
 
 
Bomba de 
recaptación 
 
 
Troponina Tropomiosina 
 
 
Actina 
 
Miosina 
Unión Sitio 
activo 
 
Figura 1-9.Transmisión neuromuscular. 
 
 
 
H. La biosíntesis de acetilcolina involucrala reacción entre la colina con el acetato activo 
(acetil-CoA). 
1. La enzima clave en la biosíntesis de acetilcolina es la colina-O-acetiltransferasa, la cual 
es sintetizada en el cuerpo de la célula neuronal y transportada por el axón terminal. 
2. Los precursores de la síntesis de acetilcolina son el piruvato y la colina. El piruvato 
se deriva del metabolismo de la glucosa mediante la glucólisis. La colina es captada en 
forma activa por la neurona motora. 
3. Una vez sintetizada, la acetilcolina es empaquetada en vesículas secretoras en la ter- 
minal del nervio motor. 
4. El potencial de acción que alcanza la terminal nerviosa motora aumenta la liberación 
de acetilcolina dentro de la hendidura sináptica. La secreción de acetilcolina incluye 
http://bookmedico.blogspot.com/
 
 
 
 
 
 
T
e
n
si
ó
n
 
(g
) 
P
o
te
n
c
ia
l 
d
e
 m
e
m
b
ra
n
a
 
(m
V
) 
20 USMLE Road Map para Fisiología 
 
 
la fusión de vesículas en la membrana presináptica (exostosis) y es activada por el au- 
mento del Ca2+. 
5. Las moléculas transmisoras se difunden a través de la hendidura sináptica y se unen a 
receptores específicos de la célula posináptica. 
6. La acetilcolina es rápidamente retirada de la hendidura sináptica mediante hidrólisis 
en acetato y colina por la enzima acetilcolinesterasa (AchE). 
7. Después de la hidrólisis de acetilcolina, la colina es tomada por la terminal nerviosa y 
usada para sintetizar nueva acetilcolina. 
I. La transmisión neuromuscular involucra la conversión de señales químicas (es decir, 
acetilcolina) a señales eléctricas (es decir, un potencial de acción) mediante AchR nicotí- 
nica, un canal iónico de compuerta de ligandos que actúa como transductor (fig. 1-10). 
1. La AchR nicotínica es un receptor ionotrópico y un canal iónico. La acetilcolina que 
se une al receptor abre el centro del canal y aumenta la conductancia de Na+ y K+ para 
moverse a través del canal. 
2. La entrada de Na+ causa despolarización de la membrana, la cual, si es de la magni- 
tud suficiente para alcanzar el umbral, produce un potencial de acción que se propaga 
en toda la superficie de la fibra muscular (véase fig. 1-10). 
a. La formación de puentes cruzados entre los filamentos gruesos (miosina) y los 
delgados (actina) depende de la extensión del potencial de acción desde el sarco- 
lema a través de la fibra muscular mediante el sistema tubular T y la liberación 
subsiguiente de Ca2+ desde el SR. 
 
 
 
 
0 
 
 
 
 
–90 
 
 
B 
5 
 
4 
 
3 
 
2 
 
1 
 
0 
0 20 40 
 
 
60 80 100 
 
Período 
latente 
Tiempo (ms) 
 
Figura 1-10. Relación entre el potencial de acción (A) y el evento 
contráctil (B) en el músculo esquelético. 
http://bookmedico.blogspot.com/
Capítulo 1: Fisiología celular 21 
 
 
b. Si la despolarización inicial de la placa terminal motora no alcanza el umbral, en- 
tonces la interacción excitación-contracción y la contracción muscular no ocurren. 
3. El potencial de membrana en reposo o potencial de la placa terminal del músculo es- 
quelético es de -70mV aproximadamente (el interior de una fibra muscular es negativo 
con respecto al exterior). 
J. El acoplamiento excitación-contracción se refiere a una serie de eventos que inician con 
el potencial de acción de la fibra muscular (la fase excitativa del acoplamiento excitación- 
contracción) y culminan con la formación de puentes cruzados y acortamiento de fibras 
musculares (la fase contráctil del acoplamiento excitación-contracción). 
1. Un retraso en el tiempo, conocido como período latente, ocurre entre el inicio del 
potencial de acción de la fibra muscular y el comienzo del evento contráctil como tal. 
2. El inicio de la contracción comienza con un potencial de acción, el cual inicial en la 
placa terminal motora y viaja a lo largo del sarcolema de la fibra muscular. 
3. Los túbulos T como continuación del sarcolema acarrean el potencial de acción al 
centro de la fibra muscular. 
4. Porciones de los túbulos T están cercanas a la cisterna terminal del SR, formando una 
estructura llamada tríada. 
5. La Ca2+-ATPasa o bomba de calcio, bombea calcio en forma activa desde el citoplasma 
al interior del SR. 
6. El potencial de acción que alcanza la tríada sirve como estímulo para que el SR li- 
bere calcio hacia el citoplasma y permita la formación de puentes cruzados y el acorta- 
miento muscular. 
 
AGENTES FARMACOLÓGICOS Y TOXINAS QUE AFECTAN 
LA UNIÓN NEUROMUSCULAR 
 
• Curare: este término se refiere al grupo de sustancias originalmente usadas por los indios del Amazonas para 
matar animales. Los compuestos derivados del curare se unen con gran afinidad a AchR, bloqueando la unión de 
acetilcolina y por ende causando parálisis del músculo esquelético. En la medicina moderna, la relajación mus- 
cular durante la cirugía abdominal es el principal uso clínico del curare o sus derivados. 
• Bungarotoxina α: esta proteína fue aislada del veneno de la cobra. Se une en forma irreversible a AchR, blo- 
quea la unión de acetilcolina y, como el curare,causa parálisis del músculo esquelético. Las víctimas de mordedu- 
ras por cobras suelen morir por sofocación. 
• Toxina botulínica: la toxina producida por Clostridium botulinum inhibe la liberación de acetilcolina del nervio 
terminal. La muerte ocurre por insuficiencia respiratoria. En clínica, la toxina botulínica se utiliza para tratar dis- 
tonías focales, las cuales son trastornos neuromusculares caracterizados por contracciones musculares repeti- 
tivas e involuntarias. Ejemplos de estos trastornos incluyen espasmos hemifaciales y contracturas del escritor. El 
tratamiento local con toxina botulínica produce desnervación química. 
• Toxina de la araña viuda negra: esta toxina causa aglutinación de vesículas que contienen acetilcolina, lo 
que produce una liberación excesiva de acetilcolina hacia la hendidura sináptica. 
• Neostigmina y fisostigmina: estos fármacos son agentes anticolinesterasa. Su principal acción es la de inhibir 
AchE; el efecto neto es el de aumentar la concentración de acetilcolina en la hendidura sináptica. En clínica, la 
fisostigmina se usa para tratar glaucoma y miastenia grave. 
• Organofosfatos: este amplio grupo de agentes incluye a los insecticidas y a los llamados gases nerviosos. Los 
organofosfatos son en extremo tóxicos por su inactivación irreversible de la AchE. 
• Benzodiazepinas (p. ej., diazepam): estos agentes son depresores del sistema nervioso central que no actúan 
en forma directa en la unión neuromuscular. Su efecto de relajación muscular está dado por su efecto depresivo 
en la formación reticular del tallo encefálico. 
• Dantroleno: este relajante muscular actúa por acción directa del acoplamiento excitación-contracción inhi- 
biendo el Ca2+liberado por el SR. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CORRELACIÓN 
CLÍNICA 
http://bookmedico.blogspot.com/
22 USMLE Road Map para Fisiología 
 
 
MIASTENIA GRAVE 
 
• La miastenia grave es una enfermedad neuromuscular caracterizada por la debilidad y marcada fatigabili- 
dad del músculo esquelético. 
• Es causada por una respuesta autoinmunitaria adquirida en que hay anticuerpos dirigidos en contra de recepto- 
res acetilcolina nicotínica (AchRs) que bloquean la unión de acetilcolina con los receptores. 
• El diagnóstico de miastenia grave se hace con la prueba de edrofonio, en la cual el paciente recibe edrofonio, 
una acetilcolinesterasa; la mejoría en la fuerza muscular sugiere la presencia de la enfermedad. 
• El tratamiento está encaminado a reducir la fuerza del ataque inmunológico o incrementar la actividad coli- 
nérgica en la sinapsis e incluye lo siguiente: 
– Inhibidores AchE que aumentan la concentración de acetilcolina en la hendidura sináptica. El tratamiento 
excesivo con inhibidores de AchE puede causar fatiga muscular por una desensibilización en la AchR nicotínica y 
llevar a una crisis colinérgica.– Los corticoesteroides suprimen el sistema inmunitario y por ende reducen la concentración de anticuerpos 
circulantes anti-AchR. 
– La farmacoterapia inmunosupresora, como la azatioprina o en forma menos común la ciclosporina, se 
usa en pacientes con enfermedad grave que no responden de manera adecuada a los corticoesteroides. 
– La extirpación de la glándula tímica también suprime el sistema inmunitario porque el timo interviene en la 
maduración de las células T. Una desventaja es que la mejoría sostenida puede no comenzar hasta meses o años 
después de la cirugía. 
– La plasmaféresis implica quitarle plasma al paciente y reponerlo con un sustituto de plasma. El efecto general 
de la plasmaféresis es reducir la concentración de anticuerpos circulantes anti-AchR. 
 
VII. Músculo liso 
A. Estructura del músculo liso 
1. El citoplasma del músculo liso es homogéneo (sin estrías visibles) visto a la microsco- 
pia de luz. 
2. Los contactos especializados entre células individuales de músculo liso tienen dos 
funciones: en la comunicación y como uniones mecánicas. 
a. Las uniones de brechas (nexos) son áreas de oposición cercana (~2 nm) entre las 
membranas plasmáticas de células diferentes. Estas uniones de brechas sirven como 
una estructura de acoplamiento eléctrico de baja resistencia. 
b. Las placas de unión se caracterizan por una brecha de 10 a 30 nm entre las mem- 
branas plasmáticas de células adyacentes. Estas estructuras pueden servir como 
punto de unión de filamentos delgados. 
3. Las células del músculo liso contienen SR en menor cantidad que el músculo esquelé- 
tico. Como el SR del músculo esquelético, la contraparte del músculo liso acumula y 
libera Ca2+. 
4. El músculo liso no tiene el sistema tubular T. Sin embargo, se piensa que las vesículas 
de superficie, llamadas caveolas, en las células individuales tienen una función aná- 
loga en la transmisión de los potenciales de acción. 
5. La contracción del músculo liso también puede ocurrir en forma independiente de un 
aumento en la concentración de Ca2+. 
B. Fisiología del músculo liso 
1. El músculo liso suele subdividirse en dos clases: músculo liso unitario o visceral y 
músculo liso multiunitario. 
2. Las dos clases de músculo liso comparten las siguientes características: 
a. El músculo liso se puede contraer en respuesta a la transmisión sináptica neuro- 
muscular o al acoplamiento eléctrico. 
 
CORRELACIÓN 
CLÍNICA 
http://bookmedico.blogspot.com/
Capítulo 1: Fisiología celular 23 
 
 
b. El músculo liso es capaz de contracciones que tienen un inicio lento pero sostenido 
por períodos largos con un requerimiento relativamente bajo de energía. 
c. La innervación motora del músculo liso es exclusivamente autónoma, ya sea para- 
simpática o simpática. 
d. Todos los músculos lisos exhiben cierto grado de tono intrínseco o tensión basal en 
reposo. Las contracciones son superimpuestas sobre este tono. 
e. Algunos músculos lisos se contraen sin un potencial de acción. 
3. El músculo liso visceral realiza importantes funciones en el sistema vascular, la vía 
aérea de los pulmones, las vías gastrointestinales y las vías genitourinarias. Las siguien- 
tes características generales permiten al músculo liso visceral realizar estas funciones: 
a. La actividad eléctrica espontánea inicia en áreas de marcapasos y se distribuye a 
todo el músculo. A diferencia del marcapasos en el músculo cardíaco, los del múscu- 
lo liso se varían de posición. 
b. La tensión se desarrolla en respuesta al estiramiento. 
c. En general, las contracciones son iniciadas por hormonas circulantes y no por im- 
pulsos nerviosos motores. Sin embargo, la actividad contráctil puede ser modificada 
y regulada por la estimulación de un nervio motor. 
d. El músculo liso visceral está ampliamente distribuido en una variedad de tejidos y 
órganos. Ejemplos incluyen las vías gastrointestinales, el útero y las arteriolas. 
e. La actividad espontánea en el músculo liso visceral resulta de cuando menos dos 
tipos de fluctuación en la actividad eléctrica: 
(1) Las ondas lentas de despolarización se producen cuando se alcanza el umbral, 
como ocurre en los músculos longitudinales del intestino. 
(2) Los potenciales espontáneos o potenciales pico producen una descarga asin- 
crónica que resulta en la contracción irregular, como ocurre en el útero sin em- 
barazo. 
f. A diferencia del músculo esquelético, el músculo liso puede contraerse o relajarse 
en respuesta a estímulos neuronales y hormonales. 
g. El calcio es la señal para la contracción del músculo liso y tanto el Ca2+ extracelular 
como el intracelular pueden activar la contracción. 
h. Como el músculo liso no contiene troponina, el Ca2+ se une a la calmodulina y 
luego el complejo Ca2+-calmodulina activa a la enzima cinasa de miosina de ca- 
dena ligera (MLCK). 
i. La MLCK activada por la Ca2+-calmodulina fosforila el componente pesado mero- 
miosina de la miosina y así aumenta de forma importante la actividad de la ATPasa. 
La miosina fosforilada tiene una gran afinidad por la actina y se forman puentes 
cruzados entre la miosina y la actina. 
j. Hay que recordar que el músculo liso puede mantener una gran fuerza bajo un mí- 
nimo grado de hidrólisis de ATP. 
k. La relajación del músculo liso puede ocurrir por los siguientes mecanismos: 
(1) La estimulación en la actividad de bomba del Ca2+ de la membrana plasmá- 
tica o del SR reduce la concentración de Ca2+ en los alrededores de los elemen- 
tos contráctiles. 
(2) La actividad de la fosfatasa de miosina de cadena ligera puede incrementarse 
para desfosforilar la MLCK para relajar el músculo liso. 
l. El músculo liso multiunitario es más parecido al músculo esquelético que al 
músculo liso visceral, pero es mucho más escaso que el propio músculo liso vis- 
ceral. 
http://bookmedico.blogspot.com/
24 USMLE Road Map para Fisiología 
 
 
(1) El músculo liso multiunitario no se contrae de manera espontánea. 
(2) El músculo liso multiunitario suele ser activado por estimulación nerviosa mo- 
tora y responde en grado bajo a hormonas circulantes. 
(3) El músculo liso multiunitario no responde al estiramiento por desarrollo de 
tensión. 
(4) Ejemplos de músculo liso multiunitario incluyen músculo ciliar (los múscu- 
los que enfocan la visión), pilomotor (los músculos que causan la erección del 
pelo) y las membranas nictantes (en los ojos de gato). 
 
 
 
 
PROBLEMAS CLÍNICOS 
 
Una mujer de 27 años se presenta con debilidad muscular que incluye ptosis palpebral, habla 
farfullada y dificultad para tragar. La historia dice que recibe gentamicina por una infección por 
gramnegativos. Se solicitan los siguientes exámenes: función tiroidea, cinasa de creatinina sérica, 
electromiograma y biopsia muscular. 
 
El médico adscrito llama la atención al médico residente por no solicitar una prueba de edrofonio, 
la cual produce una mejora notable en la fuerza muscular de la mujer al administrar el agente por 
vía IV. El resto de los exámenes arrojo resultados normales. 
1. Los diagnósticos diferenciales del residente son: 
A. Distrofia muscular de Duchenne 
B. Deficiencia de desaminasa de monoadenilato 
C. Miastenia grave 
D. Hipertiroidismo 
E. Miopatía tóxica por fármacos 
2. La condición de la paciente es más probable que se deba a: 
A. Acetilcolinesterasa inadecuada en la hendidura sináptica 
B. Producción defectuosa de receptores de acetilcolina 
C. Síntesis o almacenamiento deficientes de acetilcolina en las vesículas presinápticas 
D. Liberación alterada de acetilcolina de las terminales presinápticas 
E. Bloqueo o aumento en el recambio de los receptores de acetilcolina 
La toxina del cólera puede afectar las células al bloquear la actividad de la trifosfatasa de guanosina 
(GTPasa) de sus proteínas GS. 
3. A nivel celular, ¿cuál de los siguientes sería útil para reducir el efecto dañino de la toxina del 
cólera? 
A. Aumentar la cantidad de monofosfato de adenosina

Continuar navegando

Materiales relacionados

436 pag.
478 pag.
28 pag.
fisiologia-medica-examen

UAS

User badge image

Maximiliano Fernández Taboada