Logo Studenta

apuntes-sobre-el-video

¡Este material tiene más páginas!

Vista previa del material en texto

LA SEÑAL DE VIDEO-TV 
 
LA SEÑAL DE VÍDEO ANALÓGICO: SISTEMA PAL 
 
LA SEÑAL DIGITAL: SISTEMA DVB-T 
 
TIPOS DE TRANSMISIÓN 
Por ondas terrestres 
Por satélite 
Por cable 
 
FORMATOS Y SISTEMAS DE TELEVISIÓN 
 
SISTEMAS DE EXPLORACIÓN DE LA IMAGEN 
Vídeo por separado Y/C 
Vídeo compuesto 
Vídeo por componentes Y/R-Y/B-Y 
 
FORMATOS DE GRABACIÓN DE VÍDEO 
Sistemas domésticos: VHS (1/2 pulgada), 8mm, SVHS, H-8, DVC (1/4 pulagada), 
MiniDV. 
Sistemas industriales de emisión (Broadcast): U-Matic-HB, U-Matic-HB-SP, Betacam 
(1/2 pulgada), Betacam-SP, M-II (1/2, cassette VHS), Betacam Digital, DVC Profesional. 
Sistemas profesionales: Formato B, Formato C, y los formatos digitales profesionales: 
D-1, D-2, D-3, D-4 y el D-5, D6, y el D9. 
 
LA CÁMARA DE TELEVISIÓN: ELEMENTOS, TIPOS Y ACCESORIOS 
 
LAS CÁMARAS DE VÍDEO Y TELEVISIÓN 
LAS CÁMARAS DOMÉSTICAS 
LAS CÁMARAS PROFESIONALES 
Las cámaras ENG / SNG / EFP 
Las cámaras de estudio 
 
CARACTERÍSTICAS, PARTES Y ELEMENTOS TECNOLÓGICOS 
EL OBJETIVO 
EL CUERPO DE CÁMARA 
SENSOR DE IMAGEN 
Tubo de imagen 
Dispositivo de acoplamiento de carga – CCD 
Dispositivo CMOS 
Otros dipositivos: Super CCD, CCDHad, Hyper CCD. 
EL VISOR 
DISPOSITIVO DE ALMACENAMIENTO 
Cintas magnéticas (MiniDv, DVCPro, Betacam Digital, etc.) 
Discos ópticos 
Tarjetas de memoria 
Discos duros HD 
 
 
OTRAS FUNCIONES Y MODOS OPERATIVOS 
CORRECCIÓN DE LA TEMPERATURA DE COLOR: BALANCE DE BLANCOS 
ARRANQUE Y PARADA DE VTR (start/stop VTR) 
BARRAS DE COLOR 
GENLOCK 
 
ACCESORIOS 
Fuente de alimentación 
Conexión con el control de cámaras 
Indicador LEC (diodo de emisión de luz) 
Indicador tally 
Soportes 
La cabeza giratoria 
El trípode 
El pedestal 
Grúas 
Cabeza caliente 
Anclajes 
Travelling 
 
MICRÓFONO DE CAÑÓN O DIRECCIONAL 
 
EFECTOS VISUALES ELECTRONICOS 
 
CORTE O CAMBIO INSTANTÁNEO 
FUNDIDO 
ENCADENADO 
CORTINILLAS 
TITULADORA 
CHROMA- KEY 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1. LA TRANSMISIÓN AUDIOVISUAL 
 
Televisión etimológicamente no significa otra cosa que ‘visión a distancia’. Es decir, 
lo que da verdaderamente sentido a la comunicación televisiva es que las imágenes y los 
sonidos se trasladan desde un emisor, que es la cadena, hasta un receptor, que son los 
televidentes. La única manera, y aún hegemónica, de enviar la señal de televisión de un 
lugar a otro ha sido la retransmisión por medio de ondas hercianas. Sin embargo, en el 
presente muchos de los programas televisivos que llegan a nuestros hogares lo hacen por 
medio de los satélites o del cable, y hasta por medio de Televisión Digital, conocida como 
TDT. 
Las emisiones hercianas se basan en la modulación de la señal de vídeo en unas 
ondas que se propagan en la atmósfera por medio del espectro de radiofrecuencia. Existen 
las Onda Larga, Onda Corta, Onda Media, VHF, UHF... En la actualidad las bandas de 
emisión televisiva corresponden a los canales 21 al 69 de UHF; esta banda necesita una 
red de remisores (repetidores) para cubrir el territorio (aproximadamente cada 40 Kms. 
debe colocarse uno). En España, los enlaces de imagen se modulan a los 5,8 Mhz, los de 
sonido a 8 Khz para transmisiones monoaurales y a 15 Khz para las esterofónicas. 
Finalmente, como se sabe, la señal es recibida por las antenas individuales o 
comunitarias que se conectan con el televisor doméstico o con el magnetoscopio que 
demodulan la frecuencia recibida para poder ‘leída’. 
En resumen: la función de un modulador no es otra que la de convertir una señal 
eléctrica (la ya conocida señal de vídeo) en una onda electromagnética que transporta la 
información a larga distancia (onda portadora). Cuando la onda portadora llega al 
televisor a través de la antena, el sintonizador lleva a cabo la operación inversa: extrae de 
la onda portadora la información electromagnética correspondiente a la señal (la 
demodula) y la convierte en una señal eléctrica “legible” para el televisor o para el vídeo. 
La televisión vía satélite se transmiten en las frecuencias de microondas, 
situándose entre la banda de UHF y la de SHF; inicialmente entre los 3,5 y los 6 
Gigahertzios (Ghz), pero con los años se fue ampliando en distintas fases entre los 10,6 y 
los 50 Ghz. 
 
Los televisores ordinarios son incapaces de recibir emisiones vía satélite; para 
poder hacerlo es necesario disponer de una antena parabólica capaz de recibir las 
frecuencias de las señales del satélite y de un transformador de la señal a los niveles que 
utilizan las emisiones terrestres. 
La televisión por cable se transmite por canales cerrados, aquellos cuyas 
señales están delimitadas por su medio, por el canal. El cable coaxial y la fibra óptica son 
los principales medios utilizados para transmitir por este sistema. 
El cable coaxial, compuesto por hilo de cobre, transmite energía radioeléctrica y 
ofrece un alto nivel de protección ante las interferencias aunque sufre una gran pérdida en 
su transmisión debiéndose colocar amplificadores de señal cada 2 Km. de recorrido. A 
mayor diámetro del cable, menor pérdida. El cable de fibra óptica, compuesto por fibra de 
vidrio, transmite energía lumínica, láser, permitiendo utilizar conductores ópticos de 
mayor capacidad, incrementando el ancho de banda y multiplicando la posibilidad de 
trasladar señales y canales de televisión. Ofrece una mejor calidad de señal que el coaxial. 
Necesita un amplificador de señal cada 20 Km. 
 
2. SISTEMAS DE TRANSMISIÓN TELEVISIVA: EL MODELO ANALÓGICO 
2.1. SISTEMA PAL 
Cuando se desarrollaron los primitivos sistemas de televisión en blanco y negro, se 
crearon las señales necesarias para cubrir las exigencias que en aquel momento se 
planteaban con el fin de lograr una correcta transmisión. Sin embargo, en aquel momento 
era impensable la posibilidad de transmitir imágenes en color y, por lo tanto, no se 
previeron espacios en los que poder enviar la información correspondiente dentro de la 
señal de vídeo. Con la evolución de los sistemas de televisión se planteó la transmisión de 
imágenes en color, y surgió la necesidad de incorporar la información cromática a la ya 
existente, para lo cual se debía utilizar además el mismo soporte de transmisión. Así, se 
buscaron soluciones que permitieran encontrar «huecos» en la señal monocromática de 
vídeo con suficiente capacidad como para poder transmitir la señal correspondiente al 
color de la imagen a partir de un análisis minucioso de la señal que debería servir de 
elemento portador. 
 El sistema pal (phase alternated line -línea de fase alterna-), desarrollado por los 
laboratorios telefunken en 1963, planteó una solución a este problema, que consistió en la 
transmisión de una señal de crominancia con modulación en amplitud y con cambios de 
fase, utilizando una subportadora con una frecuencia de 4,43361875 mhz. La señal de 
crominancia no contendría las señales rgb directamente, sino que éstas se procesarían 
para transmitir únicamente dos señales de las cuales extraer en el receptor las 
componentes fundamentales, basándose en la transmisión de la señal de luminancia. se 
incorporaría a la señal principal una señal de sincronización de la fase de la de 
crominancia, como señal de control de los colores en la reproducción de la pantalla del 
televisor. 
 
2.2. sistema secam 
 Mientras que en la mayor parte de Europa y África, y también en bastantes países 
del lejano y próximo oriente, se utiliza el sistema pal (en alguna de sus variantes), en 
América el sistema de mayor implantación es su antecesor, el denominado ntsc. La razón 
se debe a que fue en los estados unidos donde se iniciaron los estudios para el desarrollo 
de un sistema de televisión en color compatible con la señal de blanco y negro. el fruto de 
estos trabajos del national television system committee fue el sistema de televisión que 
lleva su nombre. En realidad, a partir de este sistema se desarrolló el método pal, que 
solventó los defectos de losque adolecía el sistema americano. 
 
2.3. SISTEMA NTSC 
Si bien los sistemas NTSC y PAL utilizan los mismos principios 
fundamentales en el tratamiento de las señales diferencia de color, el sistema 
SECAM (instaurado en Francia, Europa Oriental, el Magreb y algunos países de 
Oriente Próximo) presenta un tratamiento diferente de la información cromática. 
 
 
3. SISTEMAS DE TELEVISIÓN DIGITAL 
3.1. SISTEMA ATSC 
A principios de los 90 el panorama de la televisión se encontraba en plena 
renovación. Diferentes grupos de trabajo elaboraban nuevos sistemas de televisión 
que aumentaran las prestaciones de los clásicos NTSC, PAL y SECAM, creando un 
estándar único. En Europa se apostaba por sistemas mejorados de televisión 
analógica que pudieran servir de puente a la futura televisión de alta definición así 
se desarrolló el sistema MAC (sistema de Componentes Analógicas Multiplexadas). 
 
Cuando todo estaba preparado para su implantación, desde EE.UU. se 
presentan los primeros planteamientos de un sistema de televisión que, ocupando 
sólo 8 MHz de ancho de banda, era capaz de transmitir señales digitalizadas. Así, 
empieza a desarrollarse un sistema de alta definición compatible con el cable y el 
satélite, en tecnología digital, el ATSC. Actualmente ya se emiten por este sistema 
en EE.UU películas en horario prime-time, en pantalla grande y con sonido 
envolvente. Pero para acceder a esta tecnología el usuario debe disponer de un 
descodificador y una pantalla grande. 
 
3.2. SISTEMA DVB 
En lo que se refiere a Europa, también desea obtener un patrón común de alta 
definición y los nuevos avances se están produciendo paralelamente a la televisión digital. 
Por tanto, el desarrollo de este sistema norteamericano provocó un cambio de rumbo 
radical en las investigaciones europeas, que se encaminan a estudiar las posibilidades de 
este nuevo sistema. A partir de la iniciativa de la televisión sueca se crea el Grupo Europeo 
de Lanzamiento (ELG) que integrará a la mayoría de las empresas de fabricación, 
explotación y difusión de televisión. El trabajo de este grupo da lugar al proyecto de 
Difusión de Televisión Digital (DVB) que, basándose en el sistema MPEG-2 crea un nuevo 
marco de aplicación para la televisión del siglo XXI. Este sistema ofrece una gran cantidad 
de prestaciones entre las que destacan las siguientes: 
- Posibilidad de transmitir un gran número de programas de televisión a través de 
un único canal con ancho de banda estándar. 
- Capacidad de transmisión de programas de radio e información digital via radio. 
- Elección flexible de la calidad del vídeo y audio transmitidos. 
- Contemplación de la transmisión de televisión de alta definición (HDTV). 
- Sistemas de codificación de alta seguridad para los programas de acceso 
restringido y “pago por visión”. 
- Mejora de la calidad de imagen respecto de las transmisiones analógicas, al utilizar 
sistemas más inmunes ante las interferencias. 
 
 Dentro de este proyecto se pueden diferenciar varios sistemas con diferentes 
funciones y características: 
 DVB-S. Diseñado para transmitir por satélite canales de 36 MHz de ancho de 
banda, con modulación digital de cuadratura de fase (QPSK). Pensado para 
programas de pago, presenta un núcleo con los programas del pquete básico, alos 
que se e añaden diferentes capas de información de otros programas, cuya 
recepción puede se habilitada a través de códigos transmitidos en los campos de 
datos adicionales. Bajo este estandar emite la plataforma Digital Plus. 
 DVB-C. Su campo de aplicación es la televisión por cable, por lo que s e sustituye el 
el sistema de modulación por el QUAM (Modulación de Amplitud en Cuadratura). 
El nivel de protección de datos es menor como consecuncia de las inferiores 
pérdidas del sistema de transmisión por cable. Como el anterior, puede contener 
programas de pago y a la carta. 
 DVB-T. Es la variante para transmisiones por tierra. Puede usar tanto los sistemas 
de modulación QPSK Y QAM, como el OFDM (Ortogonal Frequency Division 
Multiplexing). 
 DVB-MC. Tomando como base el sistema de distribución por cable, amplía la 
frecuencia de transmisión hasta 10 GHz para aplicaciones de televisión directa en 
microondas. 
 DVB-MS. Representa la versión de microondas con los principios básicos del 
sistema de transmisión DVB-S. 
 
 Pese a que existe toda la normativa y el equipamiento necesario para la 
codificación y transmisión de señales de televisión en formato digital, su campo de 
aplicación es todavía limitado, implantándose poco a poco a través de nuevas ofertas de 
televisión. La sustitución de todos los receptores analógicos por digitales no se prevé 
aproximadamente hasta 2010 (el llamado apagón analógico), por lo que se han 
desarrollado sistemas híbridos como paso intermedio a la digitalización total, como es el 
caso del sistema PAL Plus. 
3.3. SISTEMA PAL PLUS 
 En 1989, Grundig planteó un sistema que serviría de puente entre los entonces 
futuros sistemas de televisión de alta definición y el sistema PAL y que era totalmente 
compatible con él. Pensando en que la propuesta necesitaría del mayor número de apoyos 
posibles, se realizó una amplia difusión y se creó un comité encargado de aplicar las 
modificaciones que se le planteaban. El resultado de este consenso, denominado PAL Plus, 
obtuvo una gran acogida, por lo que numerosas cadenas de televisión y los principales 
fabricantes de equipamiento de televisión apoyan este sistema, implantado ya en 
numerosos países, entre ellos España, en una cantidad creciente de programas. 
 La primera diferencia importante que plantea el sistema PAL Plus estriba en la 
relación de aspecto, que evoluciona desde la relación 4:3 hasta 16:9. La razón de esta 
modificación es acercarse al campo de visión humana, así como a los formatos 
cinematográficos, que presentan una anchura de imagen mayor. Para definir esta 
relación, intermedia entre la actual televisión y la utilizada en cinemascope, se 
realizaron estudios con diferentes tamaños de pantalla. El resultado fue que para los 
tamaños de pantalla más comunes en el mercado doméstico, el valor 16:9 resultaba ser 
el más valorado por el público. 
 
 Pese a que el sistema es compatible con los televisores clásicos, esto supone que 
los receptores de televisión deberán incorporar pantallas con este formato, 
representando éste el primer problema comercial. Se estableció un calendario para la 
migración progresiva al formato ancho, pero la evolución del mercado ha sido más 
lenta de lo que se esperaba, por lo que los fabricantes han postergado la implantación 
masiva de pantallas anchas, quedando reducida su implantación a los receptores de 
gama alta. 
 
 Pero el nuevo sistema va mucho más allá del simple cambio de relación de aspecto, 
afectando muy notablemente a la señal captada, al tratamiento que se le aplica y a la 
estructura del receptor que la visualizará. El principio de funcionamiento se basa en la 
digitalización de la imagen y su codificación, de forma que se separa la información en 
dos grupos: la convencional, que interpretarán todos los receptores, y la ampliada, 
destinada a que los equipos PAL Plus mejoren los detalles representados. Esta 
codificación será dinámica, adaptándose a la complejidad de la escena. Además, toda la 
información adicional se ubica dentro del canal de televisión convencional. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1. LA SEÑAL DE VÍDEO 
 
A diferencia de otros modelos de representación visual como el cinematógrafo, que generan 
una imagen fotoquímica obtenida tras procesos de laboratorio, la imagen que vemos en 
televisión es una imagen eléctrica. La señal de vídeo/televisión se basa en la posibilidad de 
convertir las variaciones de intensidad de luz en variaciones de intensidad eléctrica a partir 
de la existencia de materiales fotosensibles que ven variadas sus características al incidir 
sobre ellosla luz. 
 
A grandes rasgos el proceso es el siguiente: supongamos una cámara de televisión que enfoca 
la imagen de un objeto iluminado. Dentro de la cámara se encuentra un tubo de cristal -el 
tubo de cámara- que contiene en su parte anterior una superficie sensible a la luz, llamada 
target, y en su parte posterior un cátodo que lanza electrones desde atrás contra el target. 
 
La óptica de la cámara recoge las imágenes exteriores y las enfoca sobre el target o mosaico 
sobre el que incide la luminosidad de la imagen real; en cada punto del target, que está 
compuesto de un material que reacciona a la luz generando electricidad, se generan distintas 
intensidades en forma de cargas eléctricas, proporcionales a las luces y las sombras que le 
llegan. Un ejemplo: cuando se enfoca sobre el target un personaje con chaqueta negra y 
pantalones blancos, la luz reflejada por la chaqueta crea una pequeña carga, mientras que la 
de los pantalones será de gran densidad. 
 
En la parte posterior hay un cañón de electrones o cátodo que ‘se dispara’ sobre el target y 
los electrones ‘disparados’ van detectando, dirigidos por unas potentes bobinas 
electromagnéticas o bobinas de deflexión, la intensidad de la luz en cada punto, 
transformando esa luz en una señal eléctrica que varía de intensidad según varía el brillo de los 
puntos de la imagen. Esa señal eléctrica recibe el nombre de señal de vídeo. 
 
Esta señal de vídeo es la base de la imagen de televisión; una vez amplificada y sometida a 
una serie de procesos puede transmitirse a distancia bien por ondas, terrestres o vía satélite, 
bien por cable. En el televisor, la señal de vídeo realiza el proceso inverso que permite que la 
electricidad de la señal se transforme en las imágenes que vemos. 
 
La señal de video se compone del pico de blancos, que corresponde a la máxima señal de 
luminosidad; el pico o nivel de negro, que corresponde a la mínima intensidad lumínica; y de 
una serie de impulsos cuya función consiste en sincronizar todos los elementos que 
intervienen en la creación de la imagen, entre otros: Impulso de sincronismo horizontal, que 
señala el inicio de lectura de cada una de las líneas; impulso de sincronismo vertical, que 
señala el inicio de cada campo, como veremos a continuación. 
 
En realidad, si te acercas con una buena lupa al televisor, verás que una imagen de televisión 
está formada por pequeñas celdas agrupadas en líneas. Si en la habitación a oscuras te 
colocas a cierta distancia del televisor y giras completamente la cabeza hacia un lado, podrás 
apreciar por el rabillo del ojo (no mires hacia la pantalla) el parpadeo que produce el haz de 
electrones al dibujar las líneas a gran velocidad. Ese parpadeo, aunque no es fácilmente 
perceptible, es el que hace que tus ojos se sientan cansados si ves la televisión durante mucho 
tiempo o si la ves en un habitación demasiado oscura. 
 
Para conseguir la perfecta sensación del movimiento sin ningún centelleo es necesario que la 
señal de vídeo se produzca con una determinada frecuencia temporal. La imagen de televisión 
es explorada por el haz de electrones de la cámara o del televisor en el sistema estándar 
español PAL de 625 líneas, a una frecuencia de 25 veces cada segundo. Lo anterior quiere 
decir que cada imagen completa de televisión tiene 625 líneas que se renuevan 25 veces cada 
segundo con una regularidad absoluta. Cada una de esas imágenes recibe el nombre de cuadro 
o frame y sería el equivalente al fotograma en cine. 
 
Sin embargo, en sentido estricto, la imagen se forma por un barrido del haz de electrones que 
va alternando el grupo de líneas pares con el grupo de líneas imapres. Así cada una de esas 25 
imágenes por segundo son en realidad dos grupos de líneas, llamados campos o semi-
imágenes, de 312,5 líneas cada uno, renovadas a la frecuencia de 50 tramas o campos por 
segundo. Este procedimiento recibe el nombre de barrido entrelazado. 
 
2. FORMATOS Y SISTEMAS DE TV 
 
2.1. SISTEMAS DE EXPLORACIÓN DE LA IMAGEN 
 
Antes de analizar los sistemas de grabación de vídeo debemos recordar que la 
televisión en color requiere procedimientos de exploración que proporcionen las tres señales 
primarias correspondientes al rojo, al verde y al azul, a partir de las que se obtienen: 
-La señal de luminancia (Y), obtenida gracias a la resta de una porción de rojo, verde y 
azul. 
-Las señales llamadas diferencia de color R-Y (rojo menos luminancia y A-Y (azul menos 
luminancia). No interesa obtener la señal correspondiente al verde menos luminancia. Así el 
proceso de codificación y transmisión se simplifica pudiendo volver a recuperarse esta señal, 
correspondiente al verde, en el receptor, merced a un proceso de sumas y restas con la 
luminancia y las señales diferencia de color efectivamente transmitidas. 
Centrándonos en la señal de vídeo y su grabación debemos decir que los parámetros 
técnicos de calidad que aportan los diferentes formatos de vídeo puede ser de tres tipos: vídeo 
separado, vídeo compuesto y vídeo por componentes. 
La grabación denominada por vídeo separado (también Y/C) consiste en la separación 
de los dos componentes fundamentales de la señal de vídeo: la luminancia y la crominancia. En 
este tipo de grabación se graba separadamente la luminancia y la crominancia en la pista de 
vídeo. La separación de ambas informaciones permite eliminar la intermodulaciones que se 
producen en los sistemas convencionales denominados por vídeo compuesto, donde se 
graban mezcladas, en cada pista de vídeo, la luminancia y la crominancia. En el tratamiento 
eléctrico de las señales aumenta la calidad de la imagen cuanto menos sea preciso recurrir a la 
mezcla y modulación de las mismas. 
El vídeo por separado es usado en la actualidad por los formatos S-VHS y Hi-8, 
mientras que el vídeo compuesto era utilizado por el VHS y el 8 mm. Con la llegada del digital 
estos formatos están quedando ya en desuso. 
Por otra parte, en la técnica Betacam la luminancia y la crominancia no se registran en 
una sola pista y con una misma cabeza sino que se usan dos pistas y dos cabezas. En una pista 
se graba la luminancia y en otra la crominancia haciendo uso del sistema por componentes 
(también llamado YUV) que es muy superior al sistema por vídeo separado. En el sistema de 
vídeo por separado la crominancia se graba separada de la luminancia, pero la señal de color 
tiene dos componentes: las señales diferencia de color (R-Y) [rojo menos luminancia] y la seña 
(A-Y) en una misma pista pero no mezcladas sino separadas, una a continuación de la otra. 
Esta idea puede ser difícil de comprender si se considera que las informaciones (R-Y) y 
(A-Y) de una misma línea de imagen se generan simultáneamente y además para grabarlas una 
a continuación de la otra se requeriría una pista de crominancia que fuera el doble de larga 
que la de la luminancia. 
El método que se utiliza está basado en la compresión temporal de la información (R-
Y) y (A-Y) de cada línea, de forma que dure la mitad de tiempo y con posterioridad se 
multiplexa. La línea es explorada y se guardan separadamente las informaciones (R-Y) y (A-Y) 
en memorias de estado sólido. Una vez acabada la exploración de la línea, la información (R-Y) 
se extrae de la memoria a doble velocidad de la que se ha empleado para introducirla y se 
envía a la cabeza de crominancia. Cuando la memoria (R-Y) se ha vaciado, se toma la 
información de la memoria (A-Y), también a doble velocidad, y se envía hacia el mismo 
cabezal. En el tiempo de una línea se han grabado así las informaciones (R-Y) y (A-Y) 
completas. El proceso de lectura es similar siguiendo el mismo procedimiento a la inversa. 
Para conseguir una perfecta sincronía entre la señal de luminancia y la de crominancia 
se añade a la señal de luminancia un impulso que sirve de referencia al sistema. 
El sistema por componentes asegura que no exista ningunainterferencia ni 
intermodulación entre los canales de luminancia y crominancia ni tampoco entre los 
componentes de la señal de color. Por otro lado, marca toda una nueva filosofía de trabajo 
respecto al entorno de equipos que trabajen con este sistema pues para mantener la máxima 
calidad en el proceso de edición, de postproducción y de incorporación de efectos (TBCs, etc), 
todos los aparatos deberán de trabajar por componentes. 
El Betacam digital también hace uso de este sistema de vídeo, además de otros 
formatos. En el siguiente cuadro resumen se especifican que sistemas de vídeo según el 
tratamiento de luminancia y crominancia usa cada formato de vídeo. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.2. FORMATOS DE GRABACIÓN DE VÍDEO 
 
Finalmente, se puede hacer otra clasificación de las cámaras en función del formato 
utilizado. En general podemos clasificar los formatos de vídeo existentes en 5 grandes grupos, 
entre los que se incluyen también los nuevos formatos digitales: 
 Sistemas domésticos: VHS (1/2 pulgada), 8mm, SVHS, H-8, DVC (1/4 pulagada), 
MiniDV. 
 Sistemas industriales de emisión (Broadcast): U-Matic-HB, U-Matic-HB-SP, Betacam 
(1/2 pulgada), Betacam-SP, M-II (1/2, cassette VHS), Betacam Digital, DVC Profesional. 
 Sistemas profesionales: empleados por las cadenas de televisión para la toma de 
estudio, para las retransmisiones y para el trabajo que exigen más alta calidad de 
 
imagen. Destacan los siguientes formatos: Formato B, Formato C, y los formatos 
digitales profesionales: D-1, D-2, D-3, D-4 y el D-5, D6, y el D9. 
 
 
 
 
 
 
3. LA CÁMARA DE TELEVISIÓN: ELEMENTOS, TIPOS Y ACCESORIOS 
 
3.1. LAS CÁMARAS DE VÍDEO Y TELEVISIÓN 
 
Las cámaras de vídeo actuales vienen en muchas formas: desde las unidades de 
vigilancia del tamaño de un maní, hasta las grandes cámaras profesionales utilizadas en 
los estudios. 
3.1.1. LAS CÁMARAS DOMÉSTICAS 
 
Usados principalmente para los vídeos hogareños y la realización de programas 
de bajo presupuesto, los sistemas de cámara hogareños con su capacidad de grabación 
incorporada ofrecen una amplia variedad de oportunidades de realización de programas. 
Las palmcorders son cada vez más populares para el uso cotidiano. Gracias a su 
pequeño tamaño y controles fáciles de utilizar, son extremadamente sencillas de operar 
y los resultados son muy satisfactorios para la realización de los programas menos 
exigentes. 
Las cámaras de vídeo compactas incluyen numerosos controles automáticos 
que ayudan a facilitar la realización de tomas. La calidad de la imagen puede ser 
notablemente buena, de modo que a veces son utilizadas para la recolección de noticias, 
cuando equipos más costosos podrían estar en riesgo. 
Las cámaras hogareñas de tamaño normal son más robustas e incluyen 
diversos refinamientos que las acercan a un desempeño de calidad profesional. 
Hoy día, con el desarrollo de las nuevas tecnologías, están dominando el 
mercado las pequeñas cámaras de mano digitales en formato MiniDV. Éstas ofrecen 
gran variedad de prestaciones, son muy ligeras y pequeñas, muy fáciles de usar, y están 
a precios asequibles para el consumidor medio. 
 
3.1.2. LAS CÁMARAS PROFESIONALES 
 
Las cámaras ENG / SNG / EFP se utilizan en el campo para la recolección de 
noticias (electrónica o satelital) y para la producción electrónica de campo cuando se 
realizan dramas en exteriores o documentales. Estas unidades ligeras son 
extremadamente adaptable s porque pueden apoyarse sobre el hombro cuando uno se 
mueve o pueden montarse sobre un trípode con ruedas en el estudio. 
Las cámaras de estudio, por otro lado, que proveen un desempeño a nivel de la 
última tecnología existente, son comparativamente pesadas y voluminosas, debido al 
alto rendimiento del objetivo zoom y al visor grande que emplean. Por consiguiente, 
usualmente utilizan un soporte robusto, tal como un pedestal. 
Mientras que los sistemas de cámara ligeros pueden ser autónomos e incluyen 
sus propios grabadores de vídeo, la cámara de estudio está normalmente conectada por 
un cable a un punto de control central (la unidad de control de cámara o estación base), 
donde la calidad de la imagen es controlada y ajustada continuamente por un operador 
especialista (operador de control), en lugar de apoyarse en recursos automáticos algo 
impredecibles. 
Al igual que en las cámaras domésticas el digital está entrando de lleno en el 
ámbito profesional, ofreciéndonos una gran variedad de cámaras digitales de gran 
precisión para el trabajo profesional en televisión y vídeo. Aún mantienen precios altos, 
pero hay ya algunas marcas como Canon o Sony que están sacando modelos más 
baratos, a caballo entre el vídeo doméstico y el profesional. 
Como hemos podido observar la cámara de vídeo y televisión se puede 
considerar lo mismo. Lo único que varía en la cámara de vídeo y televisión es la 
aplicación que se le da a cada uno de los diferentes modelos de cámara, teniendo 
muchas veces aplicaciones tanto para el vídeo como para la televisión, ya que son dos 
campos comunes y compatibles. 
Así pues, la versatilidad de estas cámaras las hace adaptables a todas las formas 
de realización del vídeo y la televisión como se observa en el siguiente dibujo. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
En este tema nos vamos a centrar en las cámaras de vídeo y televisión del ámbito 
profesional. 
 
3.2 CARACTERÍSTICAS, PARTES Y ELEMENTOS TECNOLÓGICOS 
 
La cámara fundamentalmente se puede dividir en tres partes: objetivo, cuerpo de 
cámara y visor. 
3.2.1. EL OBJETIVO 
Es el dispositivo óptico que proporciona al cuerpo de cámara las imágenes 
para la toma. Se trata de una serie de lentes independientes de características 
preestablecidas dispuestas en un tambor tubular. Se han diseñado y combinado 
cuidadosamente para conseguir un resultado global óptimo, minimizando los posibles 
defectos ópticos (denominados aberraciones). 
La focal resultante es convergente: genera imágenes de dimensiones más 
pequeñas respecto a los objetos reales tomados. El parámetro que define la capacidad 
de convergencia es la longitud focal que aparece expresada en mm y que está 
relacionada con la diagonal del plano de impresión: si la focal es inferior a esta 
 
diagonal, se trata de un objetivo de focal corta o gran angular; si es igual, se trata de un 
objetivo normal; si es superior, se trata de un objetivo de focal larga o teleobjetivo. 
Las cámaras de televisión y vídeo utilizan normalmente un objetivo de focal 
variable o zoom cuya variación focal se produce gracias a unos servomecanismos 
existentes en el cuerpo de cámara. El ángulo de campo o ángulo de visión (el ángulo 
que cubre el encuadre) es de 45º y capta la imagen según la siguiente proporción: el 
ángulo de visión vertical es 3/4 del ángulo horizontal. 
 
El diafragma regula la cantidad de luz que entra en el objetivo; se compone de 
un conjunto de láminas móviles dispuestas de forma radial que originan una apertura 
central de superficie variable, modificando la luminosidad y el contraste. El diafragma 
se encuentra regulado por servomecanismos. . Las modificaciones se deben realizar 
antes de comenzar las tomas. El enfoque puede ser manual o actuar mediante 
servomecanismos, bien localmente por el operador o a distancia en el 
respectivo control. 
El obturador no existe, es sustituido por otro procedimiento: El denominado 
obturador electrónico. El objetivo de la cámara de video y de TV carece de obturador; 
sin embargo, el cierre a la entrada de luz se produce cuando el haz de electrones acaba 
de realizar la lectura de un cuadro: es decir, cuando se produce el barrido vertical y, por 
lo tanto, el traslado del haz para comenzar una nueva lectura. Durante este período, no 
se produce ninguna incidencia luminosa. 
El enganche al cuerpo de cámara se realiza mediante sistemas estándar 
prefijados de fábrica y que según lamarca pueden ser de rosca o de bayoneta. 
 
Hay tres aspectos que se pueden controlar a través del objetivo: 
o Cómo su distancia focal afecta la imagen y el manejo de la cámara. 
o El modo de enfoque. 
o La apertura del objetivo (iris; paso f). 
 
 El objetivo zoom 
La mayoría de las cámaras de vídeo poseen un objetivo zoom. Como probablemente 
haya descubierto, éste proporciona un ángulo variable; desde una posición en gran angular, 
que toma una porción grande de la escena, a una posición en teleobjetivo que muestra una 
vista mucho más cercana y restringida. 
El efecto de "zoom" se logra ajustando ciertos elementos en el tambor del objetivo. 
Reubicando estos se altera la distancia de enfoque efectiva del objetivo. Cuando se coloca en 
la posición de teleobjetivo, la distancia focal está en su máximo. Si se coloca en la posición de 
gran angular, la distancia focal está en el mínimo. 
Se puede controlar el zoom en forma manual haciendo girar una pequeña palanca que 
está sobre el tambor del objetivo o un mando situado en las barras de soporte. (Este último 
puede ser un cable flexible o puede estar controlando a un servomotor). En muchas cámaras, 
un conmutador de dos posiciones en el lado derecho del tambor del objetivo controla un 
pequeño motor que maneja el mecanismo del zoom. La velocidad del zoom motorizado varía 
según la presión sobre el conmutador. 
 
 El control de foco 
El ajuste de foco se realiza moviendo hacia adentro o hacia afuera todo el objetivo, o 
los elementos internos del objetivo se reubican mientras que la distancia del sensor de lente a 
luz (CCD) permanece constante. El método más simple de enfoque es rotar un anillo sobre el 
tambor del objetivo, donde una escala muestra la distancia enfocada. Alternativamente, un 
mando remoto de foco en uno de los brazos auxiliares puede utilizarse para ajustar el foco o 
una pequeña palanca de foco fijada al costado de la cámara. 
 
 El ajuste de apertura de objetivo: El iris 
Si se mira dentro del tambor del objetivo, se podrá ver un diafragma con varias 
planchuelas o iris. Este ajusta la apertura del objetivo y controla la cantidad total de luz que 
pasa a través de él e incide sobre el dispositivo de recolección CCD. Se lo altera girando un 
anillo sobre el tambor del objetivo según una escala que se calibra en pasos f o números de 
transmisión. 
El iris o diafragma controla la cantidad de luz que penetra en el objetivo. Este control 
puede ser de tres tipos: automático, manual o remoto. Para un conveniente ajuste manual del 
iris, la mayoría de las cámaras están provistas de un indicador cebra de nivel de vídeo. Esta 
función es usada como una referencia para la selección de la abertura del iris según las 
condiciones de luz. Cuando la función cebra de la cámara está activada la señal aparecerá en la 
pantalla del visor de imagen. 
 
3.2.2. EL CUERPO DE CÁMARA 
Es la parte que genera la señal eléctrica en función de la imagen real captada por el 
objetivo. Es la estructura central del aparato. En las cámaras más complejas podemos 
distinguir tres partes: 
 
o SISTEMA ÓPTICO SEPARADOR 
Son unos primas ópticos que basan su funcionamiento en la propiedad 
denominada dicroísmo: propiedad de algunos cuerpos o sustancias para cambiar de 
color según sea la dirección de los rayos de luz que los atraviesan. Según esto, dichos 
prismas distinguen los tres colores fundamentales de la imagen ofrecida por las 
lentes y los dirigen en distintas direcciones donde cada color es recibido en su sensor de 
imagen correspondiente. 
 
o SENSOR DE IMAGEN 
 
Existen tres tipos de sensores de imagen: 
 
 Tubo de imagen 
Básicamente existen dos clases de tubos de imagen: el Orticón y el Plumbicón. El 
Orticón es el máximo representante de los tubos basados en el fenómeno fotoemisor. El 
Orticón está totalmente obsoleto y en desuso. El otro tubo de imagen es el Plumbicón, 
máximo exponente de los tubos fotoconductores. El Plumbicón es el que hoy día permanece, 
aunque está siendo sustituido por los CCD, que veremos a continuación. Este tubo consta de 
las siguientes partes: 
 Target: es el elemento semiconductor que procede a convertir la señal 
luminosa en energía eléctrica. Está constituido por una fina lámina 
transparente de dióxido de estaño, llamada placa de señal, sobre la cual 
incide la luz procedente de la escena enfocada por el objetivo y donde, 
además se recoge la señal eléctrica resultante del proceso de exploración. 
 Mosaico: está compuesto por 400.000 elementos (distribuidos en grupos de 
tres, cada uno sensible a un color en el caso de no existir prismas dicroicos 
previos (caso de cámara monotubo o de CCD). Cada elemento es analizado 
mediante el barrido de un cañón de electrones generado en el tubo de 
imagen; su lectura se produce en el mismo tiempo que 625 líneas. 
 
El Plumbicón consiste en un tubo de vidrio envolvente al vacío en cuyo interior se 
produce el siguiente proceso: sobre el target, se deposita el material semiconductor que 
conforma el mosaico que está compuesto de monóxido de plomo impurificado con sulfuro de 
plomo. 
Al incidir la luz en el mosaico, tras atravesar la placa de señal, se produce una corriente de electrones del interior al 
exterior que es proporcional, en cada punto, a la cantidad de luz que incide. De esta forma, aparece en cada punto de la cara 
externa del target una acumulación de cargas negativas y en los respectivos puntos de la cara interna una acumulación de cargas 
positivas. 
Seguidamente, un haz de electrones barre la cara interna del target. Así cada punto toma tantos electrones del haz 
como cargas positivas posee, de manera que queda eléctricamente neutro. 
De esta forma, los electrones de cada punto de la cara externa del target fluyen a través de la placa de señal y son 
recogidos por una resistencia de carga. Así se dispone de una corriente eléctrica que se corresponde proporcionalmente con la 
luminosidad de la imagen incidente sobre el target. 
Las características del Plumbicón las podemos resumir en las siguientes: 
1. Tienen una sensibilidad muy alta (2870° K) 
2. El material fotosensible se va agotando con el tiempo. 
3. Se puede producir el arrastre del haz por la permanencia de cargas positivas sin 
neutralizar en el target (lo que se denomina cola de cometa - arrastre de la imagen) 
4. Son capaces de compensar las distorsiones geométricas de las lentes del objetivo 
gracias a la posibilidad de ajustar su posición respecto a ellas. 
5. Se alteran fácilmente con la cercanía de campos eléctricos. 
 
 Dispositivo de acoplamiento de carga - CCD 
Se trata de elementos sólidos encargados de la captación de la imagen y su 
conversión a señal de vídeo. El almacenaje de la carga eléctrica lo realiza gracias a una 
adecuada disposición de condensadores de silicio pequeños y compactos que se 
denominan MOS (semiconductores de óxido de metal) y que constan de tres capas: 
polisilicio (capa conductiva), dióxido de silicio (capa aislante) y silicio (capa 
acumuladora). 
El procesado de la imagen, desde su captación hasta su salida como señal de vídeo, se 
realiza mediante los siguientes procesos: 
 
a) Conversión fotoeléctrica: partiendo de un potencial de luz, la primera capa libera en 
el interior una cantidad de electrones proporcional a la intensidad luminosa. 
b) Almacenaje de cara: cuando los electrones liberados han igualado la intensidad 
luminosa, son almacenados. 
c) Operación de transferencia: la carga de electrones es transferida hacia el 
interior para realizar su lectura. La puerta de transferencia realiza la función de 
obturador electrónico y se abre en el tiempo correspondiente a los tiempos de retorno 
del haz. Mientras dura esta transferencia de electrones, no puede haber nuevas 
aportaciones de cargas eléctricas, porque se mezclarían entre sí produciendo 
alteraciones en la imagen. 
 
Las características básicas de los CCDsson las siguientes: 
1. Su expectativa de vida, teóricamente, no tiene límite. 
2. No le afectan las luces muy altas. 
3. No tienen distorsiones geométricas. 
4. No pueden compensar las distorsiones de las lentes como ocurría con los tubos. 
5. Es inmune a los golpes debido a su robustez y resistencia. 
6. El tiempo de puesta en marcha es instantáneo. 
7. Es inmune a los campos eléctricos. 
8. Su tamaño es compacto y ligero, lo que permite cámaras más pequeñas y ligeras. 
9. Su consumo de energía es muy bajo. 
10. Su capacidad de resolución depende de la proporción de pixels/ccd por superficie. 
11. Tiene mayor sensibilidad a las luces bajas. 
12. Reduce el efecto moiré-aliasing. 
13. Reducción del número de dispositivos respecto a los tubos. 
14. Pueden producir el efecto de mancha vertical/smear (franja luminosa que atraviesa un 
punto) cuando se enfoca a un punto brillante. 
15. Alta sensibilidad a temperaturas extremas: a mayor temperatura más ruido en la 
imagen. 
16. Tienen algunas restricciones en cuanto a colorimetría, sobre todo en los rojos. 
17. Los sensores no se pueden adaptar a las características del objetivo, por lo que la 
calidad de la imagen se modificará si se cambia el objetivo. 
 
Existen varios tipos de CCD: 
 
 De transferencia de cuadro: en este tipo, los electrones pasan al área de 
almacenamiento aprovechando el barrido vertical entre cada cuadro. 
 De transferencia interlínea: cada elemento sensor tiene su correspondiente 
almacén, al que traslada la carga cuando se produce el barrido horizontal; la 
descarga de dicho almacén, se realiza aprovechando el barrido vertical, 
durante la lectura del siguiente cuadro, depositándose los electrones en el 
drenaje. 
 De transferencia cuadro/interlínea: primero se produce la descarga 
interlínea y luego la de cuadro. 
 
 
 Dispositivo de almacenamiento de carga: CCD-HAD 
Es el CCD mejorado. Es más pequeño, por lo que se pueden obtener más pixels por 
superficie y tiene mayor sensibilidad a las luces bajas. A partir de este se desarrolla el Hyper-
had: sensor de transferencia interlínea con tecnología Had. 
 
Hoy día todas las cámaras digitales usan el sistema de CCD y CCD- HAD, 
siendo el dispositivo más extendido en las nuevas cámaras. 
 
o CIRCUITOS 
 Son de dos tipos: 
1) Unidad de servicio: se ocupa del correcto funcionamiento del sensor de imagen, 
proporcionándole la alimentación y amplificando la señal de vídeo que sale de él. 
2) Unidad de control: es la parte inteligente de la cámara; se ocupa de dirigir la 
unidad de servicio y producir los sincronismos, tanto de línea como de cuadro. Estos 
sincronismos se pueden generar también de forma externa desde el control de cámara si 
tenemos varias sincronizadas entre sí. 
 
3.2.3. EL VISOR 
 
El visor de su cámara es un nexo vital en la realización de imágenes: 
o Muestra exactamente cuánto de la escena es visible en la toma, lo que le permite 
asegurarse de que ningún objeto indeseado (por ejemplo, un micrófono o algún 
espectador) sea incluido accidentalmente en la imagen. 
o Le permite encuadrar precisamente la toma, componiendo la imagen para un impacto 
máximo. 
o Le muestra exactamente qué porción de la toma tiene máxima definición. 
o Le ayuda a juzgar la exposición y la calidad de la imagen mientras usted realiza la toma. 
o Puede ayudar cuando combina tomas de otras cámaras; por ejemplo, muestra sus 
salidas combinadas con su propia imagen. 
o Particularmente cuando trabaja en el campo, puede ser útil para visualizar la toma que 
acaba de grabar. 
 
La mayoría de las cámaras de vídeo están equipadas con un visor electrónico de alguna clase. 
 El tipo ocular. Este posee un pequeño tubo de imagen magnificado en blanco y 
negro (generalmente 1,5 pulgadas/38 mm de diámetro). Se coloca el ojo 
apoyado en el soporte de goma, y se varía una lente compensadora para 
ajustarlo a su visión. El visor puede ser colocado encima o en algún costado de 
la cámara. 
 El tipo de pantalla abierta. Colocado encima de la cabeza de la cámara se usan 
ambos ojos para ver este monitor de 5 o 7 pulgadas (12,5 o 18 cm), de modo 
que es menos cansado observar durante períodos largos. Si el visor se inclina, 
se hace más fácil ver a diferentes alturas de la cámara. Un visor con visera 
evita que la luz caiga directamente sobre la imagen. En general se utilizan 
visores monocromáticos, ya que permiten un enfoque más crítico. Pero las 
versiones en color también tienen ventajas: permiten verificar la calidad de 
color de la imagen, evaluar las relaciones de color, seleccionar tonos (p. ej., las 
remeras de un equipo particular en un juego de pelota), evitar reflejos 
coloreados accidentales. 
 La pantalla de LCD. Pequeñas pantallas de cristal líquido delgadas, livianas y 
que utilizan poca energía. Aunque la claridad y la calidad del color no son altas, 
la pantalla de LCD es con frecuencia mucho más conveniente en el campo que 
un monitor color. 
 
Los controles principales del visor usualmente incluyen brillo de pantalla, foco de 
pantalla, contraste (que aumenta/reduce las diferencias tonales), realce (que destaca el detalle 
de las imágenes del visor para que los ajustes del foco resulten más fáciles de ver). Un visor 
color también incluye ajustes de la intensidad del color (saturación). Recuerde que estos 
controles sólo afectan la imagen del visor, no afectan la imagen real de la cámara. 
 
 3.3. OTRAS FUNCIONES Y MODOS OPERATIVOS 
 
3.3.1. CORRECCIÓN DE LA TEMPERATURA DE COLOR 
Corrección de la temperatura de color. La reproducción del color de una cámara 
depende en gran parte del color de la fuente de luz con la que se esté utilizando la cámara. El 
ojo humano, se adapta a los cambios de color de la fuente de luz: luz solar, lámparas 
halógenas, etc. pero la cámara, no. Así, el color del objeto diferirá con cada color de la fuente 
de luz sino se realizarán los ajustes apropiados. 
La temperatura de color de luz utilizada en la grabación con cámara de video es un 
factor determinante para obtener una precisa reproducción del color. En las cámaras este 
cambio de temperatura de color debe compensarse electrónicamente para poder obtener la 
misma señal de video para el blanco y para el resto de los colores, por eso el balance de 
blancos se ajusta cada vez que se cambia de luz. La temperatura de color se puede corregir con 
filtros y se puede ajustar con el balance de blancos que ahora veremos. 
 
 3.3.2. BALANCE DE BLANCOS 
Como se ha visto en la temperatura de color, dado que las cámaras no se adaptan a la 
variación de la distribución espectral debido al tipo de fuente de luz, esta variación debe 
compensarse eléctricamente mediante el ajuste de los amplificadores del video de la cámara. 
De lo contrario, no se podrá obtener una reproducción de color precisa. 
 
 3.3.3. SENSIBILIDAD 
Está en función de los niveles o cantidad de luz de la escena a transmitir. Puede venir, 
según fabricantes en decibelios (dB) o en nomenclatura inglesa Heigh (alta), Low (baja) o 
normal. La sensibilidad de una cámara viene dada por la abertura del iris requerida para 
suministrar una señal de vídeo con suficiente nivel para una condición de iluminación 
determinada. 
Puede mejorarse la sensibilidad incrementando la ganancia de los amplificadores de 
vídeo, pero habrá que tener en cuenta la relación señal/ruido de la cámara. Aunque se han 
desarrollado muchas técnicas para la reducción del ruido, éste sigue siendo inevitable en 
cualquier clase de dispositivo. 
 
3.3.4. ARRANQUE Y PARADA DE VTR (start/stop VTR) 
Es un control remoto de arranque y parada del magnetoscopio. Además están las 
teclas de magnetoscopio de avance, retroceso y pausa. 
 
3.3.5. BARRAS DE COLOR 
Las señales de barras de color se utilizan como referencia para óbtener una 
reproducción precisa del color en los sistemas de vídeo, para ajustar los codificadores, TBCs, 
monitores,etc. Esto se efectúa pasando la señal de barras de color a través del sistema y 
evaluándolo con vectorscopio, monitores forma de onda y monitores de imagen. En las 
cámaras PAL con salida de barras norma EBU hay siete franjas verticales: una franja blanca en 
el extremo izquierdo seguida d seis franjas de color hacia la derecha. El orden de las franjas de 
color de izquierda a derecha es: amarillo, cyan, verde, magenta, rojo y azul. 
Todas las cámaras tienen generadores de barras de color para el ajuste de la tonalidad 
cromática y de los controles de saturación del equipo que se vaya a utilizar en el sistema de 
vídeo. Cuando se graba algo siempre hay que empezar grabando la señal de barras de color 
generada en la cámara. Esto hace posible reproducir de forma precisa el color de la grabación 
en cualquier VTR. 
 
3.3.6. GENLOCK 
En los sistemas que utilizan dos o más cámaras es necesario sincronizar los 
generadores de sincronismo internos de cada cámara para obtener señales de fase. En 
términos más específicos, las frecuencias y fases del sincronismo vertical, del sincronismo 
horizontal y de la subportadora de cada salida de cámara deben sincronizarse entre si. De lo 
contrario, se producirán alteraciones de imagen al conmutar de una cámara a otra con el 
conmutador o mezclador utilizado en el sistema. El sincronismo se consigue distribuyendo la 
misma señal compuesta a cada' cámara del sistema, y esto es lo que se define como Genlock, 
la función de la cámara de sincronizar su generador de sincronismo interno a la señal 
suministrada a través del conectar IN del 
Genlock. 
 
 3.4. ACCESORIOS 
Los accesorios más importantes de la cámara de vídeo y televisión son los siguientes: 
 
1) Fuente de alimentación: incluye información sobre la tensión que necesita el tubo. 
 Rack de conexión 
 Batería: de niquel- cadmio las antiguas y de litio las actuales. 
2) Conexión con el control de cámaras: 
 Mediante cable: coaxial - triaxial 
 Mediante radiotransmisor con antena: útil en las tomas de exteriores o las que 
requieran múltiples movimientos (cámara-car) 
3) Indicador LEC (diodo de emisión de luz): luz roja que indica al operador que está en el aire. 
4) Indicador tally: luz roja que indica a la persona colocada ante las cámaras cuál de ellas la 
está tomando en ese momento. 
5) Soportes: pueden ser de varios tipos: 
 Soportes corporales: Varios tipos de abrazadera corporal o arnés de hombros están 
disponibles. En ellos la cámara se apoya sobre un hombro y un sostén debajo se 
apoya en el pecho o en un receptáculo sobre el cinturón. 
 Soportes estabilizadores: Ingeniosos arneses estabilizadores como el Steadicam o el 
Panaglide pueden proporcionar tomas estables aun bajo las condiciones más 
extremas. Un arnés elaborado compensado por un resorte le permite caminar, 
correr y trepar, produciendo secuencias de imágenes de progresión suave. Un visor 
colocado sobre el arnés, le permite al operador controlar las tomas. 
Desafortunadamente, este tipo de arnés, que puede soportar cámaras portátiles de 
vídeo de tamaño normal y cámaras de películas, es bastante pesado y engorroso, de 
modo que realizar tomas durante períodos largos puede resultar fatigoso. 
6) La cabeza giratoria que fija la cámara al trípode tiene dos funciones: sostiene firmemente la 
cámara y le permite girar la cámara de un lado a otro e inclinarla hacia arriba y abajo. En vídeo 
y televisión se suele usar las de fricción y las de efecto fluido. 
7) El trípode: Las tres patas de un trípode pueden proporcionar un soporte muy firme para su 
cámara, incluso cuando realiza tomas en condiciones difíciles. Es compacto y portátil, y su 
altura es ajustable (por ejemplo, de 55 cm a 2 m). Las patas telescópicas del trípode, que son 
extensibles en forma independiente, están construidas usualmente de una aleación metálica o 
fibra de carbón. En la parte superior del trípode se encuentra la cabeza giratoria a la que se fija 
la cámara. Un indicador de nivel de tipo burbuja ayuda a determinar que se ha colocado el 
trípode absolutamente vertical. 
Para que un trípode pueda moverse se lo puede colocar sobre una base con ruedas 
tipo dolly, transformándose en un trípode móvil o trípode con ruedas. (Un suelo plano y 
regular es esencial para evitar la vibración de la imagen.) Las ruedas pueden moverse 
libremente o estar bloqueadas para restringir su dirección (para movimientos en línea recta) y 
pueden aplicarse los frenos de las ruedas para inmovilizar directamente el movimiento del 
trípode. 
8) El pedestal: El pedestal es el caballo de tiro de la mayoría de los grandes estudios. 
Básicamente es una columna telescópica central de altura ajustable, fijada a una base de tres 
ruedas. Los pedestales livianos proporcionan una considerable flexibilidad en las tomas, 
cambios rápidos de altura y una dirección de precisión, aun en espacios confinados. Los tipos 
más pesados y compensados son difíciles de manejar y limitados comparativamente. 
9) Grúas: pueden existir de varios tipos, entre los que se encuentran: 
 Pescante: Este es un brazo con un contrapeso en un extremo sostenido por un 
pedestal, trípode o base con ruedas. En el otro extremo del brazo pende una cámara 
ligera/portátil guiada por control remoto. Los mandos de la cámara están colocados 
en el otro extremo del pescante, junto con un monitor de imagen/visor. 
 Grúas de estudio: Las grúas pequeñas son usadas cuando el director requiere 
variaciones de altura (por ejemplo de 0,46 a 3 metros) y una movilidad considerable. 
Varias formas de grúas de estudio están disponibles, desde sostenes plegables 
"ligeros" a grúas gigantes que requieren operadores especialistas experimentados. 
 Plataformas hidráulicas: dispuestas sobre un vehículo, con un brazo hidráulico en 
cuyo extremo se encuentra un soporte para la cámara y el operador. Pueden 
alcanzar una altura de 30 metros sobre el nivel del suelo. 
10) Cabeza caliente: consiste en un brazo ligero en cuyo extremo se puede colocar la cámara 
de pequeños tamaño, y lo maneja el operador desde el extremo opuesto. El operador sólo 
controla las operaciones a través de un monitor, ya que no accede al visor de la cámara. 
 11) Anclajes: suponen un tipo de sujeción del cuerpo de cámara a una estructura firme en un 
determinado punto para tomas que no precisan realizar ningún tipo de movimiento; se utilizan 
en su formato especial en coches, helicópteros, etc. 
12) Travelling: facilita el movimiento a través de una trayectoria recta; para producir esta 
movilidad, se instalan la cámara y el operador en un carro rígido con cuatro o más ruedas, que 
se desplaza sobre dos guías paralelas. Todos los elementos deben tener un alto grado de 
estabilidad y suavidad de desplazamiento. 
 
4. EL MAGNETOSCOPIO 
Durante décadas los programas televisivos se emitieron en directo sin ningún sistema 
de almacenaje. Centenares de obras de teatro y novelas, informativos, programas educativos o 
de entretenimiento únicamente sobreviven en la memoria de aquellos que los hicieron o que 
los vieron. 
Para remediar las dificultades que conllevaba esta anómala situación, la industria 
televisiva estadounidense ‘exigió’ que alguien inventara un sistema para almacenar las 
imágenes electrónicas que captaban las cámaras de televisión (véase el epígrafe 7 del bloque 
de Tecnología de Media Cine). 
El magnetoscopio, conocido en la calle con la denominación de vídeo, se presentó por 
vez primera en un informativo de la cadena norteamericana CBS el 30 de noviembre de 1956. 
A la altura de mediados de los años sesenta todas las televisiones habían generalizado su uso. 
A su vez, los primeros magnetoscopios que tuvieron un éxito considerable en el sector 
doméstico comenzaron a comercializarse a mediados de los años setenta. 
En síntesis, la labor de un vídeo consiste en transformar las informaciones 
visuales y sonoras de la señal eléctrica de la televisiónen informaciones magnéticas que 
puedan ser conservadas en una cinta magnética. Esa labor la realizan las cabezas de 
grabación (véase el epígrafe 8 del bloque de Tecnología de Media Cine). 
El registro sobre soporte magnético se sustenta, como en el caso del sonido, en la 
imantación de una capa magnética (óxido de hierro, dióxido de cromo o metal) depositada en 
el soporte con forma de finas agujas. El campo se genera en el entrehierro de un pequeño 
electroimán (cabeza). En su núcleo hay enrolladas unas bobinas en forma de espiral y de 
cobre. Al hacer circular una corriente por la bobina se produce un campo magnético en el 
entrehierro. Al desfilar la cinta frente a la cabeza se producen variaciones de flujo 
electromagnético que crean zonas imantadas, de mayor o menor intensidad, que almacenan 
las señales de flujo magnético. Al producirse la lectura, estos imanes inducirán una señal 
eléctrica variable en las bobinas de la cabeza magnética que será reflejo de la señal registrada. 
Almacenar las señales en una cinta magnética posee una serie de ventajas: en 
condiciones perfectas, la calidad de la grabación y de la imagen recibida es idéntica; se puede 
visionar inmediatamente y en algunos formatos hasta puede comprobarse en tiempo real; 
puede reproducirse varias veces sin deterioro excesivo; la cinta puede borrarse y volver a ser 
útil para grabar; puede manipularse a través de la edición; permite incluir efectos visuales que 
pueden ser modificados y permite copiar películas de formato cine y manipularlas – añadir 
subtítulos, música, adaptarlas al formato de pantalla. 
 
5. LA EDICIÓN 
Desde el punto de vista del lenguaje audiovisual el montaje, tal como puede verse en 
el epígrafe de Montaje de Media Cine, es el proceso de ordenación de un material con el fin de 
obtener un programa continuado, sin imágenes o sonidos inútiles o mal colocados. El montaje 
en soporte electromagnético o digital característico de la televisión suele denominarse con el 
nombre de edición o editaje. 
El sistema más simple de edición se lleva a cabo con dos magnetoscopios. Uno 
reproductor y el otro grabador. En el primero situamos la llamada cinta master, aquella que 
posee todos los brutos de la grabación, y en el grabador se coloca la cinta donde haremos el 
montaje final de imágenes. 
La operación de edición propiamente dicha consiste en establecer los puntos de inicio 
y final del plano y marcarlos como puntos de edición. Ambos magnetoscopios han de 
sincronizarse para que ésta se haga con perfecta calidad en los puntos de edición establecidos. 
Para ello los magnetoscopios retroceden unos metros de cinta en lo que se denomina pre-roll 
que es algo así como tomar carrerilla para que cuando lleguen los puntos de entrada, ambos 
magnetoscopios estén ya sincronizados a la misma velocidad. 
Como indicábamos anteriormente, existen una serie de técnicas de proceso electrónico, que 
posibilitan la edición en vídeo directamente sobre la señal, sin tener que recurrir al montaje 
físico. Estas técnicas se pueden enmarcar en los siguientes tipos de edición: 
a) Ensamblado. Es el sistema más simple, pues se limita a grabar sobre una cinta virgen 
las escenas seleccionadas de la grabación original. Por su similitud con la edición física, 
se le denomina también edición al corte, ya que las transiciones entre las escenas se 
producen por cambio simple de las imágenes que contiene. Este modo de edición lleva 
aparejada la grabación conjunta de la imagen y su sonido asociado, mientras que la 
sincronización de la cinta puede llevarse a cabo tomando como referencia la primera 
secuencia grabada, o bien «formateando» previamente la cinta al grabar sobre ella 
únicamente los impulsos de control de pista, que serán respetados durante los diversos 
ensamblajes. 
b) Inserción. En ocasiones interesa realizar una edición directamente sobre la cinta 
original, para evitar pérdidas de calidad producidas por multigeneración. Esta 
operación es apropiada cuando deseamos eliminar una escena de la cinta original, 
colocando en su lugar imágenes procedentes de otra fuente. En este caso, se define el 
punto de inicio y de final de la cinta en la que se aplicará la sustitución, así como el inicio 
de la secuencia que se insertará en su lugar. Esta operación se desarrolla habitualmente 
sobre las pistas helicoidales, pudiéndose mantener el sonido lineal y los impulsos de 
control de la grabación original. 
Algunos magnetoscopios incorporan la edición de inserción por prelectura. En estos 
casos, las imágenes se reproducen por un juego de cabezas adelantadas respecto de las 
principales, lo que permite efectuar un proceso de edición o mezcla de la información 
grabada en la cinta con otras fuentes, y grabar estas imágenes modificadas sobre la 
propia cinta mediante las cabezas principales. 
c) Edición A/B roll. Cuando queramos introducir transiciones más elaboradas que los 
cambios por corte, tendremos que usar un sistema con mayor complejidad que los 
anteriores. En él se dispondrá de varias fuentes de reproducción, que identificaremos 
por letras, más un soporte en el que se almacenará el resultado de la edición. Al 
conjunto de magnetoscopios se le sumará el mezclador de audio y vídeo, que 
posibilitará las transiciones entre los diferentes «rollos» mediante fundidos y 
cortinillas, así como la consola de control de todo el conjunto. 
Si usamos dos fuentes, que llamaremos A y B, deberemos marcar las 
posiciones de inicio y final de las secuencias que formarán la escena definitiva, 
especificando también el punto de la cinta de destino en la que quedará grabada. En 
este caso, seleccionaremos el tipo de transición que deseemos y la duración del 
proceso de mezclado. Una vez configurados todos los parámetros del evento, 
podremos realizar una vista previa, en la que se producirá una simulación de las 
operaciones programadas y, en caso favorable, se efectuará la edición de la escena 
sobre la cinta. 
d) Edición en split. A veces interesa que el sonido y el vídeo se editen en diferentes 
puntos, logrando efectos creativos muy interesantes. En estos casos, se llevará a cabo 
una variante del sistema anterior, que consiste en definir una edición de audio, 
desplazada una cantidad de tiempo respecto de la de vídeo. El método es básicamente 
igual al AlB roll, pero indicando cuál de los dos elementos se conmuta en primer lugar 
y la distancia a la que le seguirá el otro. 
 
Un elemento muy útil para las operaciones de edición es el código de tiempos. Éste es 
una señal generada por un reloj del sistema que se inscribe en la cinta permitiendo localizar 
con absoluta exactitud cualquier punto de ella. Esta información se graba en la pista de 
órdenes como un número con formato horas:minutos:segundos:frames y se visualiza en la 
parte inferior de la imagen. En una mesa de edición programable, el código de tiempos se usa 
para designar los puntos de edición. 
Hoy en día han ido proliferando las ediciones no lineales, por supuesto inexcusables en 
los procesos de edición profesionales pero a nivel más modesto también las encontramos en 
los sectores y mercados domésticos,. En esencia, en la actualidad consisten en el uso del 
ordenador para editar los vídeos. Las ventajas son enormes pues una vez capturado el 
contenido del vídeo en un disco duro se puede organizar y ordenar las escenas de una forma 
parecida a como se trabaja con los párrafos en un editor de texto. Su función inicial no era otra 
que la de ahorrar costes de producción trabajando con sistemas menos profesionales (más 
baratos) antes de pasar a la edición final sobre sistemas de edición profesional, cuyo alquiler 
por hora de producción era mucho más costoso. 
Al estar el vídeo digitalizado, podemos ir instantáneamente a cualquier punto de la 
grabación. El programa editado puede mejorarse espectacularmente con el añadido de todo 
tipo de efectos. Las transiciones puedenser mucho más vistosas que los simples fundidos y 
cortinillas. También podemos añadir gráficos y todo tipo de animaciones. Lo más importante 
del proceso es la tarjeta de captura, con salidas de vídeo para reproducción y así tener la 
posibilidad de volcar el vídeo a cinta. Además hace falta el software de edición, necesario para 
organizar las escenas según el orden que queramos y añadir los efectos con los que vayamos a 
adornar la producción. 
 
6. EFECTOS VISUALES ELECTRÓNICOS 
En la televisión contemporánea los efectos visuales están extraordinariamente 
presentes tanto para crear efectos especiales como para retocar los colores, insertar diversas 
bandas de publicidad, crear transiciones o insertar el indicativo de la cadena. 
El mezclador de vídeo constituye la herramienta básica desde donde se generan y 
organizan la mayoría de los efectos visuales analógicos. El mezclador recibe las distintas 
fuentes de entrada de imágenes y tras su paso por una matriz de conmutación permite elegir 
la factura visual de las imágenes acabadas. Su primera función consiste en establecer las 
maneras en que se producen las transiciones entre planos. De este modo, todo mezclador de 
video realiza cuanto menos tres tipos de transición: 
o Por corte o cambio instantáneo de una imagen a otra. Es la más frecuente en todos 
los programas 
o Por fundido. A veces yendo la imagen desde negro y ganando luminosidad hasta su 
nivel normal, conocidos como fade in; y a veces desvaneciéndose la imagen original 
hacia negro, conocidos como fade out. 
o Por encadenado. Consistente en la superposición de la imagen previa a la segunda de 
una manera que aquella se va desvaneciendo. 
Más sofisticadas son las transiciones que utilizan cortinillas. Las cortinillas poseen unos 
rebordes visibles, de formas geométricas y con variadas direcciones de movimiento – arriba, 
abajo, derecha, izquierda, espiral- dando paso de una imagen a otra por sustitución. Eran muy 
utilizadas en el cine mudo y en la actualidad se usan en series nostálgicas o para llamar la 
atención visual. 
Hoy día es muy frecuente en muchos programas que la imagen incorpore algún tipo de 
texto. Éstos se hacen con la tituladora, un aparato capaz de insertar textos y subtítulos en la 
imagen. Es con lo que se insertan, por ejemplo, los mensajes SMS en muchos programas 
actuales. 
El chroma key es el efecto especial más conocido popularmente. Su fundamento 
consiste en insertar una imagen con un fondo distinto proveniente de otro lugar. Se establece 
un color (chroma) como ‘llave’ (key) que da entrada a la imagen –habitualmente el azul o el 
verde-, el mezclador detecta este color y las zonas donde existe las rellena con otra señal de 
vídeo seleccionada. Es decir, si tenemos un fondo de un paisaje lunar y por otro lado 
grabamos a un actor disfrazado de astronauta sobre un fondo verde, al mezclar ambas 
imágenes ejecutando la función de chroma del mezclador obtendremos una tercera imagen 
del astronauta sobre la luna; el color verde del plano del astronauta habrá sido sustituido por 
la imagen de la luna. El elemento a incrustar no debe jamás llevar nada del color ‘llave’, dado 
que aparecería como un agujero a través del cual veríamos el fondo. También existen, claro 
está, los efectos digitales; la mayoría de estos efectos no están incluidos en el mezclador sino 
que son unidades independientes. Son innumerables y el desarrollo de las diversas compañías 
de software hace surgir cada vez nuevas opciones, aunque en ocasiones los problemas de 
competencia dan lugar a incompatibilidades u obligan a la adquisición de hardware extra para 
su uso. Algunos ejemplos son: efecto de compresión, varía la relación de aspecto de la imagen; 
pushes, cuando una imagen empuja a otra para sacarla de cuadro; flips, efectos de giro sobre 
los ejes de la imagen salvo la perpendicular; rotación, similar al flip añadiendo el giro sobre la 
perpendicular. 
7. BIBLIOGRAFÍA 
o Web del Cnice del Ministerio de Cultura  http://recursos.cnice.mec.es/media/ 
O DANCYGER, Ken. Técnicas de edición en cine y vídeo.Gedisa, Barcelona, 1999 
O FERNÁNDEZ CASADO, José Luís y Nohales Escribano, Tirso. Postproducción digital. Cine 
y vídeo no lineal. Escuela de cine y vídeo, Andoaín, 1999. 
o MILLERSON, Gerald. Técnicas de realización y producción en televisión. IORTV, Madrid, 
1996.

Continuar navegando