Logo Studenta

LOS_PLASTICOS

¡Este material tiene más páginas!

Vista previa del material en texto

1
LOS PLÁSTICOS. 
 
 
1. DEFINICIÓN. 
 
2. CARACTERÍSTICAS GENERALES. 
 
2.1. Estructura y composición 
2.2. Monómeros y polímeros 
2.3. Polimerización y poliadición 
2.4. Carboplastos, carboxiplastos y siliconas 
 
3. ELEMENTOS BÁSICOS DE UN PLASTICO. 
 
3.1. Modificantes. 
3.2. Catalizadores. 
3.3. Plastificantes. 
3.4. Estabilizadores. 
3.5. Cargas y pigmentos. 
3.7. Armaduras y refuerzos. 
 
4. TIPOS DE PLASTICOS. 
 
4.1. Polímeros lineales y ramificados 
4.2. Termoplásticos y termoestables 
4.2.1. Polímeros termoplásticos 
4.2.1.1. Poliolefinas. 
4.2.1.2. Polimerizados del estireno. 
4.2.1.3. Homopolímeros. 
4.2.1.4. Ésteres de polivinilo y polimetacrilo. 
4.2.1.5. Óxidos, sulfonas y similares. 
 4.2.2.termoestables 
4.2.2.1. Fenoplastos 
4.2.2.2. Aminoplasto 
4.2.2.3. Otras resinas. 
4.2.2.4. Poliuretanos y similares. 
 4.2.2.5. Polímeros silicónicos 
4.3. Elastómeros: Cauchos y gomas. 
4.4. Los plásticos reforzados 
 
5. ELABORACION. 
 
5.1 Moldeo. 5.1.1. Presión. 
5.1.2. Inyección. 
5.1.3. Extrusión. 
 
6. PROPIEDADES. 
 
6.1. Propiedades mecánicas. 
6.1.1. Resistencia a compresión. 
6.1.2. Resistencia a tracción. 
6.1.3. Deformabilidad. 
6.2. Propiedades físicas 
6.2.1. Densidad. 
6.2.2. Propiedades eléctricas. 
6.2.3. Propiedades térmicas. 
6.2.4. Durabilidad. 
6.3. Propiedades químicas 
 
7. APLICACIONES 
 
8. BIBLIOGRAFIA. 
 2
 
LOS PLÁSTICOS. 
 
 
1. DEFINICIÓN. 
 
“Plástico” proviene de PLASTIKOS palabr a griega que significa susceptible de ser 
modelado o moldeado. 
 
Quizá la mejor manera de caracterizar los plásticos es describir un número de cualidades que 
tienen en común, eliminando de esta forma los materiales que no las tienen: 
 
 
- Los plásticos se llaman así porque en alguna etapa de su fabr icación o de su utilización 
tienen propiedades plásticas. 
 
Pueden ser plásticos- sólo una vez, o pueden ser tantas veces como se quiera. Sin 
embargo, esta propiedad no basta para distinguir a los plásticos de otros materiales. El 
vidrio y el hormigón pueden tener, un comportamiento análogo, pero no son, plásticos. 
 
 
- Los plásticos son materiales orgánicos : esto es, están basados en la química del 
carbono. Esto elimina materiales como el hormigón y el cristal, pero no excluye el asfalto, 
que no está clasificado como plástico. 
 
 
- Los plásticos son materiales sintéticos , productos de la Industria qulmlca, que convierte 
materias primas en formas nuevas y radicalmente diferentes. Esto elimina materiales 
naturales tales como el asfalto y la laca, pero no excluye las ceras sintéticas. 
 
 
- Los plásticos son polímeros de elevado peso molecular ; esto es, son moléculas 
gigantes formadas por numerosas unidades repetidas combinadas en agregados muy 
grandes. 
 
 
 
Los primeros plásticos, como el celuloide o la galalita , partían de polímeros a los que se 
añadían sustancias plastificantes. El proceso que condujo a los plásticos modernos fue la 
sintetización: partir de monómeros o moléculas sencillas para obtener polímeros mediante una 
reacción química polimerizante. 
 
Los resultados alcanzados por los primeros plásticos incentivaron a los químicos y a la 
industria a buscar otras moléculas sencillas que pudieran enlazarse para crear polímeros. En la 
década de los 30, químicos ingleses descubrieron que el gas etileno polimerizaba bajo la 
acción del calor y la presión, formando un termoplástico al que llamaron polietileno (PE) . 
 
Al reemplazar en el etileno un átomo de hidrógeno por uno de cloruro se produjo el cloruro de 
polivinilo (PVC) , un plástico duro y resistente al fuego. Al agregarles diversos aditivos se logra 
un material más blando, sustitutivo del caucho, comúnmente usado para ropa impermeable, 
manteles, cortinas y juguetes. Un plástico parecido al PVC es el politetrafluoretileno (PTFE) , 
conocido popularmente como teflón y usado para rodillos y sartenes antiadherentes. 
 
Otro de los plásticos desarrollados en los años 30 en Alemania fue el poliestireno (PS) . 
También en esta época se crea la primera fibra artificial, el nylon . Su primer uso fue la 
fabricación de paracaídas para las fuerzas armadas estadounidenses durante la Segunda 
Guerra Mundial, extendiéndose rápidamente a la industria textil en la fabricación de medias y 
otros tejidos combinados con algodón o lana. 
 
Nacen en 1942 las melaminas , las resinas epoxi , el poliuretano y en 1952 el policarbonato . 
 
La evolución ha sido muy rápida, hoy tenemos unos 50 materiales que con sus tipos, subtipos, 
mezclas, etc. pueden llegar a ser unos 2000. 
 3
2. CARACTERÍSTICAS GENERALES. 
 
2.1. Monómeros y polímeros. 
 
La materia esta formada por moléculas que pueden ser de tamaño normal o moléculas 
gigantes llamadas polímeros. 
 
 
 
La unidad de bajo peso molecular es el monómero : Molécula, generalmente de la 
química orgánica, capaz de combinarse con moléculas de su misma naturaleza para 
formar un producto de peso melecular muy elevado, denominado polímero. 
 
 
Los polímeros (del griego poly, muchos; meros, parte, segmento), se producen por la 
unión de cientos de miles de moléculas pequeñas (monómeros) que forman enormes 
cadenas de diferentes formas. Pueden pertenecer a la química inorgánica (cemento, 
porcelana, vidrio, etc.) o a la química orgánica (proteínas, grasas, propilenos, etc.) 
 
 
 
Si el polímero es rigurosamente uniforme en peso molecular y estructura molecular, su grado 
de polimerización es indicado por un numeral griego, según el número de unidades de 
monómero que contiene; así, hablamos de dímeros, trímeros, tetrámero, pentámero y 
sucesivos. El término polímero designa una combinación de un número no especificado de 
unidades. De este modo, el trióximetileno, es el trímero del formaldehído, por ejemplo. 
 
Si el número de unidades es muy grande, se usa también la expresión gran polímero. Por su 
origen se dividen en: 
 
- Naturales : cuando se encuentran en la naturaleza (celulosa, caucho, resinas vegetales, etc.). 
 
 Ambar. 
 
Es una resina fósil de plantas coníferas. Conocida desde la más remota antigüedad se utilizaba para 
la producción de objetos de ornamento con la técnica de grabado o de estampado a presión. Una de 
las primeras utilizaciones de la Baquelita ha sido la imitación del ámbar. 
 
 
Celulosa. 
 
 
La celulosa es uno de los muchos polímeros 
encontrados en la naturaleza. La madera, el 
algodón y la cuerda de cáñamo están 
constituidas de celulosa fibrosa. 
 
La celulosa está formada por unidades 
repetidas del monómero glucosa. 
 
Ocupa un lugar importante en la historia de los polímeros porque fue utilizada para hacer algunos de 
los primeros polímeros sintéticos, tales como el nitrato de celulosa, acetato de celulosa y rayón. 
 
 
 Cuerno. 
 
Es un material orgánico compuesto de queratina (aprox. el 80%). Es termoplástico y se trabaja 
después de calentarlo en seco o por inmersión en agua hirviendo o con soluciones alcalinas. 
Después de haberlo ablandado se puede prensar, obteniendo objetos y láminas (cajas, botones, 
peines...). 
 
 
 Marfil. 
 
Se obtiene de los colmillos de los animales y está constituido esencialmente por sales de calcio y 
otras substancias orgánicas. Se utilizaba antes de la invención de las materias plásticas para la 
fabricación de las teclas de los piano, mangos de los cuchillos, peines, bolas de billar... 
 
 
 4
Caseina. CS. 
 
La caseína es una proteina que se encuentra en la leche. 
 
No es soluble en agua, pero si lo es en álcalis (amoniaco, bórax, aminas...). 
 
 
 
- Artificiales o semisintéticos. Obtenidos por transformación química de polímeros naturales. 
 
Nitrato de celulosa. CN.Termoplástico.
 
 
 Celuloide. 
 
Es la primera de la materia plásticas artificiales, inventadas por J.W. Hyatt mezclando nitrato de 
celulosa y alcanfor. Tiene multiples usos por su facil elaboración y coloración y por su gran 
resistencia y resiliencia. 
 
Se puede cortar, laminar, plegar, perforar, estirar, tornear, estampar a presión, modelar calentándola 
con agua o aire caliente; se puede encolar y decorar en superficie. En cambio no se puede someter 
a inyección ni a compresión ni tampoco trabajarla con el extrusor, ya que se descompone. 
 
 
 
 
 
 
 
 
 
 
Acetato de celulosa. CA. Termoplástico. 
 
Como la Celuloide se obtiene mediante la modificación química de un polímero natural: la celulosa 
que es una de las substancias orgánicas más comunes en la naturaleza. El acetato de celulosa es la 
primera materia plástica estampada a inyección. 
 
Tiene el aspecto de un polvo blanco y debido a su aspecto 
agradable se utiliza principalmente para la fabricación de objetos 
transparentes, translúcidos y opacos como las teclas para las 
máquinas de escribir y calculadoras, pulsadores, revestimiento 
de volantes para automóviles, empuñadura de cuchillos, 
pantallas, vidrios de relojes, partes de máscaras de protección, 
plumas, mangos de paraguas, juguetes etc... 
 
 
 
 
 
 
 
 
 
 
 
 
 
Galatita. Termoplástico.
 
 
Uno de los primeros plásticos fue la galalita. Es una materia plástica natural de origen proteica 
obtenida de substancias orgánicas como la leche (caseina), cuerno o de productos vegetales como 
semillas de soja. 
 
Fue obtenida en 1897 por Adolph Spitteler y W. Kirsche partiendo del suero de la leche al que se le 
añadían plastificantes y que luego se endurecía con formaldehido. 
 
Conocida con el nombre comercial Galalith (Galalite en Italia y Erinoid en el Reino Unido) se 
presentaba con un aspecto similar al de la Celuloide o bien al marfil o al cuerno artificial. 
 
 
 
 
 5
 
 
 
 Ebonita. 
 
La ebonita es un material obtenido en el siglo pasado sometiendo la goma a un proceso de 
vulcanización. Algunos artículos fabricados con este material se expusieron en el 1851 en el Cristal 
Palace de Londres. Se trata de un compuesto a mitad de camino entre las materias plásticas 
autenticas y la goma natural. 
 
Durante el proceso de vulcanización se introduce en la masa azufre (30-50%), obteniendo un 
compuesto que posee gran poder dieléctrico, buena resistencia a los productos químicos, una cierta 
dureza y rigidez hasta temperaturas de 50 ºC y con un aspecto brillante. 
 
Se utilizó en separadores de baterías eléctricas, plumas estilográficas, boquillas de pipas, de 
instrumentos musicales... 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
- Sintéticos : Obtenidos químicamente a partir de sustancias de bajo peso molecular para 
formar monómeros y la subsiguiente polimerización de éstos (polietileno, poliésteres, etc.). 
 
Baquelita. 
 
 
Termoplástico. 
En 1909 el químico L. H. Baekeland sintetizó un polímero a partir de moléculas 
de fenol y formaldehído. Este producto podía moldearse a medida que se 
formaba y resultaba duro al solidificar. No conducía la electricidad, era resistente 
al agua y los disolventes, pero fácilmente mecanizable. Se bautizó con el 
nombre de baquelita, el primer plástico totalmente sintético de la historia. 
CARACTERISTICAS: 
 
Excelente resistencia mecánica. 
Buenas propiedades eléctricas, elevado poder aislante y gran resistencia a la humedad. 
Resistente al alcohol, tetracloruro de carbono, hidrocarburos aromáticos y petróleo. 
Difícilmente inflamable. Soporta los 110 o C. 
USOS Y APLICACIONES: 
 
Aislante eléctrico (maquinarias, motores eléctricos, radio ...) 
Aislamiento de alta tensión para transformadores. 
Soportes para carretes. 
 
 
 
Lo que distingue a los polímeros de los materiales constituidos por moléculas de tamaño 
normal son sus propiedades mecánicas. En general, los polímeros tienen buenas resistencias 
mecánicas debido a la atracción entre sus grandes cadenas poliméricas. Estas fuerzas 
intermoleculares dependen de la composición química del polímero y pueden ser: 
 
- Fuerzas de Van der Waals (fuerzas de dispersión). 
 
Existen en moléculas de muy baja polaridad, generalmente en los hidrocarburos. Provienen 
de dipolos transitorios (como resultado de los movimientos de electrones, en cierto instante 
una porción de la molécula se vuelve ligeramente negativa, mientras que en otra región 
aparece una carga positiva equivalente). Estos dipolos producen atracciones electrostáticas 
muy débiles en moléculas de tamaño normal, pero en los polímeros, formados por miles de 
estas pequeñas moléculas, las fuerzas de atracción se multiplican llegando a ser enormes. 
 
 6
- Fuerzas de Atracción dipolo-dipolo. 
 
Debidas a dipolos permanentes, como en el caso de los poliésteres. Estas atracciones son 
mucho más potentes y a ellas se debe la gran resistencia a tracción de las fibras de los 
poliésteres. 
 
- Enlaces de Hidrógeno 
 
Estas interacciones son tan fuertes, que una fibra obtenida con estas poliamidas (nylon) tiene 
resistencia a tracción mayor que la de una fibra de acero de igual masa. 
 
- Enlaces iónicos. 
 
Hay atracciones de tipo iónico que son las más intensas. Se llaman ionómeros y se usan, por 
ejemplo, para hacer películas transparentes de alta resistencia. 
 
 
 
 
 
 
 
 
 
 
 
 
2.2. Procedimientos de form ación de las macromoleculas. 
 
Existen diversos procesos para unir moléculas pequeñas con otras para formar moléculas 
grandes. Su clasificación se basa en el mecanismo por el cual se unen estructuras monómeras 
o en las condiciones experimentales de reacción. 
 
2.1.1. Polimerización por adicción. 
 
En las reacciones de adición, varias unidades monoméricas se unen, en presencia de un 
catalizador, como resultado de la reorganización de los enlaces C=C de cada una de ellas. 
 
- Adición de moléculas pequeñas de un mismo tipo unas a otras por apertura del doble 
enlace sin eliminación de ninguna parte de la molécula (polimerización de tipo vinilo ). 
- Adición de pequeñas moléculas de un mismo tipo unas a otras por apertura de un anillo sin 
eliminación de ninguna parte de la molécula (polimerización tipo epóxido). 
 
- Adición de pequeñas moléculas de un mismo tipo unas a otras por apertura de un doble 
enlace con eliminación de una parte de la molécula (polimerización alifática del tipo diazo). 
 
- Adición de pequeñas moléculas unas a otras por ruptura del anillo con eliminación de una 
parte de la molécula (polimerización del tipo aminocarboxianhidro). 
 
- Adición de birradicales formados por deshidrogenación (polimerización tipo p-xileno). 
 
 
Los polímeros vinílicos son polímeros obtenidos a partir de monómeros vinílicos ; es decir, 
pequeñas moléculas conteniendo dobles enlaces carbono-carbono . 
 
- El polietileno se obtiene a partir del monómero etileno. Cuando polimeriza, las moléculas 
de etileno se unen por medio de sus dobles enlaces, formando una larga cadena de varios 
miles de átomos de carbono conteniendo sólo enlaces simples entre sí. 
 
 
 
 
Tipo de enlace Kcal / mol 
Van der Waals en CH4 2,4 
Dipolos permanentes 3 a 5 
Enlaces hidrógeno 5 a 12 
Iónicos mayores a 100 
 7
 
 
 
- Los polímeros vinílicos más sofisticados se obtienen a partir de monómeros en los cuales 
uno o más de los átomos de hidrógeno del etileno han sido reemplazados por otro átomo o 
grupo atómico. 
 
 
Polipropileno 
 
 
 
 
Poliestireno 
 
 
 
 
 
 
Poli(cloruro de vinilo) 
 
 
 
 
 
- Reemplazando dos átomos de hidrógeno, sobre el mismo átomo de carbono, podemos 
obtener poliisobutileno , que es un tipo de caucho.Poli (metacrilato de metilo) 
 
 
 
 
 
 
 
 
- No muchos monómeros en los cuales se hayan reemplazado los átomos de hidrógeno en 
ambos átomos de carbono son capaces de polimerizar. Pero un polímero que se obtiene a 
partir de un monómero sustituido en ambos átomos de carbono es el 
politetrafluoroetileno , denominado Teflon. 
 
 
 
 
 
 
 
 
 
Los polímeros isómeros son polímeros que tienen esencialmente la misma composición de 
porcentaje, pero difieren en la colocación de los átomos o grupos de átomos en las moléculas. 
 
 
 8
 
 
2.1.2. Polimerización por condensación. 
 
En la reacción de condensación, los monómeros se combinan con la formación y pérdida de 
moléculas pequeñas, como agua, alcohol, etc. 
 
- Formación de poliésteres, poliamidas, poliéteres, polianhidros, etc., por eliminación de 
agua o alcoholes, con moléculas bifuncionales, como ácidos o glicoles, diaminas, 
diésteres... 
 
- Formación de polihidrocarburos, por eliminación de halógenos o haluros de hidrógeno, con 
ayuda de catalizadores metálicos o de haluros metálicos. 
 
- Formación de polisulfuros o poli-polisulfuros, por eliminación de cloruro de sodio, con 
haluros bifuncionales de alquilo o arilo y sulfuros alcalinos o polisulfuros alcalinos. 
 
 
 
2.3. Homopolímeros y Copolímeros 
 
 
- Homopolimeros : son polimeros que contienen una sola unidad estructural (polietileno, 
polipropileno). Además, contienen cantidades menores de irregularidades en los extremos 
de la cadena o en ramificaciones. 
 
 
- Copolímeros : contienen varias unidades estructurales, como es el caso de algunos muy 
importantes en los que participa el estireno. 
 
Las diferentes combinaciones de monómeros se realizan para modificar las propiedades de 
los polímeros y lograr nuevas aplicaciones. Lo que se busca es que cada monómero 
imparta una de sus propiedades al material final; así, por ejemplo, en el ABS, el acrilonitrilo 
aporta su resistencia química, el butadieno su flexibilidad y el estireno imparte al material la 
rigidez que requiera la aplicación particular. 
 
No solo cambian las propiedades al variar las proporciones de los monómeros, sino 
también al variar su posición dentro de las cadenas. 
 
Las mezclas físicas de polímeros, que no llevan uniones permanentes entre ellos, también 
constituyen a la enorme versatilidad de los materiales poliméricos. Son el equivalente a las 
aleaciones metálicas. 
 
 
2.4. Concepto de Tacticidad 
 
El término tacticidad se refiere al ordenamiento espacial de las unidades estructurales. 
 
El mejor ejemplo es el polipropileno, que antes de 1955 no tenía ninguna utilidad. En ese año, 
Giulio Natta en Milán, utilizó para hacer polipropileno, los catalizadores que Karl Ziegler había 
desarrollado para el polietileno. Esos catalizadores, hechos a base de cloruro de titanio y tri-
alquil-aluminio, acomodan a los monómeros de forma que todos los grupos metilos se sitúan al 
mismo lado en la cadena. 
 
En esta forma, Natta creó el polipropileno isotáctico, que tiene excelentes propiedades 
mecánicas. Hasta ese momento, con los procedimientos convencionales, sólo se había podido 
hacer polímeros atácticos, sin regularidad estructural. 
 
El polipropileno atáctico es un material ceroso, con pésimas propiedades mecánicas. 
 
Otros catalizadores permiten colocar los grupos alternadamente, formando polímeros que se 
llaman sindiotácticos, los cuales, como los isotácticos, tienen muy buenas propiedades. 
 9
3. ELEMENTOS BÁSICOS DE UN PLASTICO. 
 
 
3.1. Materias primas 
 
El componente principal de un plástico (vehículo) son polímeros o resinas artificiales, por lo 
general derivados de la celulosa y de los hidrocarburos. Para su utilización hay que añadirles 
otros productos que mejoren su mala flexibilidad, mala resistencia al choque, mala resistencia a 
bajas temperaturas, agrietamientos... Estos productos son los modificantes (catalizadores, 
plastificantes, estabilizador es, cargas y pigmentos). Por último, para fabricar plásticos con 
usos especiales se le añaden armaduras y refuerzos. 
 
 
 
 
El petróleo se refina para formar moléculas orgánicas pequeñas, llamadas monómeros, que 
luego se combinan para formar polímeros resinosos, que se moldean o extruyen para fabricar 
productos de plástico. 
 
 Del total del petróleo utilizado, el 70% se quema para producir energía, el 20%, lo utilizan 
diferentes industrias, el 4% la industria petroquímica lo utiliza para diferentes usos y sólo el 6% 
es empleado en la fabricación de plásticos. 
 
 
3.1.1. Resinas. 
 
En la tecnología de los materiales poliméricos: el término resina se aplica a todo polímero que 
constituye la materia prima básica en la fabricación de los productos plásticos acabados o 
semiacabados y a las resinas empleadas directamente en obra. 
 
Por su procedencia las resinas se clasifican en: 
 
- Resinas naturales : de origen vegetal y raramente de origen animal. 
 
- Resinas artificiales : proceden de la modificación química de ácidos grasos, de las resinas 
naturales y de otras sustancias macromoleculares. 
 
- Resinas sintéticas : proceden de reacciones químicas controladas a partir de materias 
perfectamente definidas que, en sí mismas, no tienen carácter de resinas. 
 
 
 10
3.1. Modificantes. 
 
Las diversas clases de plásticos y sus copolímeros proporcionan una amplia variedad de 
propiedades, pero no son suficientes para cubrir las muchas demandas de características y 
aplicaciones especiales que se requieren en el mercado. Los modificantes amplían el campo 
de aplicación de los plásticos y proporcionan una variación muy matizada de propiedades 
principalmente los plastificantes, estabilizadores, pigmentos o tintes... 
 
 
3.1.1. Plastificantes. 
 
Son materiales líquidos o sólidos que al mezclarlos con las resinas las vuelven blandas, más 
flexibles, más tenaces (y a veces más débiles) de lo que serían en cada caso. Posibilitan a 
bajas temperaturas lo que podría hacer el calor a temperaturas más altas, a base de atenuar 
las fuerzas de tracción entre las moléculas lineales y permitiendo que puedan moverse 
fácilmente unas con relación a las otras. 
 
Un buen plastificante se caracteriza por: 
 
- Compatibilidad. Esto significa que durante toda la vida del objeto el plastificante debe 
permanecer en su sitio. Algunos plastificantes emigran gradualmente a la superficie; por 
ejemplo, en hules, la superficie se vuelve grasienta, mientras que el plástico desnudo se 
vuelve frágil, se contrae y se cuartea. 
 
- Estabilidad. El plastificante no se estropeará gradualmente con la edad, lo que llevaría al 
deterioro del objeto de plástico. 
 
- No degradabilidad. El plastificante no atacará al plástico, rompiendo las cadenas largas 
moleculares en segmentos cortos o de alguna otra forma. Tampoco dañará a otros 
constituyentes, tales como estabilizadores o pigmentos. 
 
- Rendimiento. Una pequeña cantidad cundirá mucho. De forma general, cuanto menos 
cantidad se precise mejor es el plastificante. 
 
- Atoxicidad. Aunque siempre es de desear, es particularmente importante si los objetos 
pueden llevarse a la boca (juguetes y objetos para niños pequeños). 
 
 
 
3.1.2. Catalizador. 
 
Sustancia cuya presencia hace reaccionar a dos o más productos entre sí, que por sí solos 
permanecerían prácticamente inertes unos frente a otros. En la química macromolecular 
también se denomina iniciador. 
 
 
 
3.1.3. Estabilizadores. 
 
Los plásticos sin mezcla, tales como la tubería de polietileno o la lámina de cloruro de polivinilo, 
pueden degradarse cuando se exponen aciertos ambientes, como por ejemplo la luz solar. Sin 
embargo, pueden reforzarse con estabilizadores, tales como los absorbentes de rayos 
ultravioleta y antioxidantes. El negro de humo, por ejemplo, convierte el polietileno, que es un 
material rápidamente degradable, en otro que resiste muy bien la luz solar y la intemperie. 
 
Otros estabilizadores cumplen su cometido sin colorear ni volviendo opaco al plástico.3.1.4. Cargas. 
 
Material insoluble en polvo, granos o fibras incorporado a un compuesto polimérico para reducir 
su precio, su exotermia o su retracción y frecuentemente para aumentar su dureza, su 
resistencia a la abrasión o al calor u otra propiedad específica, como por ejemplo: 
 11
- Moldeabilidad. Los plásticos fenólicos en estado puro no se moldean bien y son duros y 
quebradizos. Resultan mucho más moldeables cuando se les mezcla con harina de 
madera, normalmente de madera dura, en proporción de hasta un 50 por ciento. 
 
El material mezclado se contrae y se resquebraja menos, desgasta menos los moldes y 
cuesta menos que los fenólicos puros. Puede usarse cáscara de nuez molida o 
ingredientes semejantes. Con este material, de uso general, se hacen, por ejemplo, piezas 
de carpintería. 
 
- Resistividad eléctrica. La resistencia eléctrica de los plásticos fenólicos moldeados puede 
aumentarse incorporando mica finamente dividida; muchas piezas moldeadas para 
electricidad se hacen de esta manera. 
 
- Resistencia al calor. Las cargas de amianto aumentan enormemente la resistencia al 
calor de los plásticos fenólicos y otros plásticos termoestables. Otras cargas inorgánicas 
importantes son el sílice, arcilla y carbonato cálcico. Este último, a menudo, en forma de 
piedra caliza molida o polvo de mármol. 
 
- Tenacidad. La fragilidad es superada generalmente, además de con el uso de 
plastificantes o por copolimerización, incorporando cargas fibrosas, normalmente cortadas 
en longitudes de 1,5 m m a 15 m. Estos rellenos pueden ser fibras naturales tales como el 
algodón, cáñamo, o bien sintéticas, tales como el rayón, nylón, poliéster y fibra de vidrio. 
 
 
 
3.1.6. Pigmentos 
 
Muchos plásticos son transparentes e incoloros y por lo tanto coloreables; otros, admiten 
coloración limitada. Los acrílicos, por ejemplo, pueden incluirse en los de la primera clase, los 
fenólicos, en la segunda. En algunos casos, el color puede ser tanto en transparente como en 
opaco, en otros sólo en opaco. 
 
Los tintes proporcionan colores transparentes; los pigmentos, opacos. 
 
Los colores deben ser compatibles con el plástico y sus constituyentes, tales como 
plastificantes y estabilizadores, así como entre ellos. La estabilidad a la luz es normalmente 
función de la estabilidad inherente del tinte o del pigmento, pero puede ser afectada por 
interacciones a largo plazo con el plástico y sus constituyentes. 
 
 
 
3.1.7. Armaduras y refuerzos. 
 
Muchos plásticos se fabrican en forma de material compuesto, lo que implica la adición de 
algún material de refuerzo (normalmente fibras de vidrio o de carbono) a la matriz de la resina 
plástica. 
 
Los materiales compuestos tienen la resistencia y la estabilidad de los metales, pero por lo 
general son más ligeros. Las espumas plásticas, un material compuesto de plástico y gas, 
proporcionan una masa de gran tamaño pero muy ligera. 
 
 
 
3.1.8. Lubricantes. 
 
Los lubricantes mejoran la procesabilidad de los polímeros, realizando varias importantes 
funciones. 
 
- Reducen la fricción entre las partículas del material, minimizando el calentamiento friccional 
y retrasando la fusión hasta el punto óptimo. 
- Reducen la viscosidad del fundido promoviendo el buen flujo del material. 
- Evitan que el polímero caliente se pegue a las superficies del equipo de procesamiento. 
 12
4. TIPOS DE PLASTICOS. 
 
 
Las macromoléculas, lineales o ramificadas, pueden estar colocadas, unas con respecto a 
otras, de forma diferente. 
 
 
- Puede darse el caso de que se encuentren desordenadas, 
entrelazadas como un fieltro. Es lo que se llama el estado 
amorfo . Los plásticos amorfos son vítreos, transparentes y 
generalmente frágiles. 
 
 
 
 
 
- Pueden estar alineadas, en claro paralelismo, como las 
cerillas en su caja. Pero no se sitúan así en toda su longitud, 
sino en tramos muy pequeños, que reciben el nombre de 
cristalitas (cuerpo sólido cuyos elementos constitutivos -
átomos, iones o moléculas- están dispuestos de forma regular 
en las tres dimensiones). Las longitudes restantes de cada 
macromolécula se pliegan formando lazos o bucles. 
 
Los plásticos parcialmente cristalinos son translúcidos u opacos, pero más resistentes al 
calor que los amorfos. 
 
 
 
 
Los plásticos con macromoléculas 
lineales o ramificadas, pero no 
entrelazadas (reticuladas) pueden 
ser moldeados de manera 
reversible. 
 
Por acción del calor, se reblandecen para adoptar la forma 
que se les quiera dar. Son los termoplásticos . 
 
 
Los plásticos con macromoléculas 
tridimensionalmente reticuladas 
(entrelazadas) no pueden ser 
moldeados de manera reversible. 
 
Son los termoendurecidos. 
 
Para forzar la reticulación, los químicos introducen, en las 
macromoléculas originales, grupos reactivos de moléculas 
que se disponen a distancias regulares y que actúan como 
grapas entre las cadenas. 
 
 
Cuando las macromoléculas forman una red de malla abierta, 
los plásticos resultantes son elásticos como la goma.Se les 
llama elastómeros . 
 
 
 
 
 
 13
Nota: Con el fin de favorecer el conocimiento de los distintos materiales plásticos, especialmente en el 
momento de su clasificación, la Sociedad de Industrias Plásticas de los Estados Unidos (SPI) ha 
difundido un código de identificación de uso corriente a nivel internacional, que es el utilizado en 
este tema. 
 
Existen más de 100 tipos de plásticos, los más comunes son sólo 6 y se los identifica con un 
número dentro de un triángulo (símbolo de reciclaje) para efecto de facilitar su clasificación para 
el reciclado. 
 
 
 
 
4.1. Polímeros termoplásticos. (También llamados pistómeros o termoplastos). 
 
 
Son polímeros (lineales, ramificados o no), que de manera reiterativa se pueden 
reblandecer (plastificar) por la acción del calor y endurecer al enfriase. Pueden llegar a 
fundirse sin que tenga lugar su descomposición químico siempre que no se alcance una 
determinada temperatura, denominada de descomposición. 
 
Están constituidos por macromoléculas líneales o ramificadas que, a partir de cierta 
temperatura, inferior a la de descomposición, deslizan entre sí de modo que el material 
adquiere una fluidez viscosa. 
 
Para que un polímero tenga aplicación como termoplástico debe tener una temperatura de 
transición vítrea Tg (si se trata de un material amorfo), o una temperatura de fusión Tm (si se 
trata de un material cristalino), superior a la temperatura ambiente. 
 
Por lo general los materiales termoplásticos presentan un buen conjunto de propiedades 
mecánicas, son fáciles de procesar, reciclables y bastante económicos. La principal desventaja 
deriva del hecho de que son materiales que funden, de modo que no tienen aplicaciones a 
elevadas temperaturas puesto que comienzan a reblandecer por encima de la Tg, con la 
consiguiente pérdida de propiedades mecánicas. 
 
 
 
4.1.1. Poliolefinas. (polietileno, polipropileno, polibuteno, polisobutileno, etc.) 
 
 
 
Polietileno. PE. Termoplástico. 
 
El polietileno es un termoplástico fabricado a partir del etileno (elaborado a partir del etano, uno 
de los componentes del gas natural) , en forma de gránulos o de polvo blanco. Sus propiedades 
técnicas depende de la masa molecular, la ramificación de la cadena y el grado de cristalinidad, 
por lo que el método de elaboración influye considerablemente, especialmente la presión. 
 
 
Todos los polímeros derivados del etileno tienen una gran resistencia a los productos químicos , 
acidos , bases, aceites, grasas, disolventes ... Sin embargo, su resistencia es moderada para los 
hidrocarburos normales y clorados . 
 
 
Debido a su gran facilidad de extrusion para film, los poliestilenos son muy utilizados para 
recubrimientos de otros materiales , papel, cartón, aluminio...y para embalajes. 
 
 
 
El etileno, según la temperatura a que se someta puede transformarse endos tipos de 
polimeros: 
 
 
 
 14
 
PEAD (HDPE) 
Polietileno de alta densidad 
 
 
 
 
 
 
El polietileno de alta densidad es un termoplástico fabricado a partir del 
etileno a temperaturas inferiores a 70 ºC y presión atmosférica (proceso 
Ziegler-Natta). 
 
Polimeriza con estructura lineal (de tipo cristalino), y densidad 
comprendida entre 0,94 y 0´96 kg/dm3 . 
 
Es muy versátil y se lo puede transformar de diversas formas: 
Inyección, Soplado, Extrusión, o Rotomoldeo. 
 
 
USOS Y APLICACIONES: 
 
El PEAD , polietileno de alta densidad, se utiliza para fabricar bolsas, cajas de botellas, tuberías, 
juguetes, cascos de seguridad laboral .. 
 
Gracias a su estructura lineal sirve para cuerdas y redes de pesca, lonas para hamacas .. La 
resistencia térmica permite usarlo para envases que deban ser esterilizados en autoclave (leche , 
sueros ..) 
 
También en construcción se utiliza en tuberías para gas, telefonía, agua potable, minería, drenaje y 
uso sanitario. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CARACTERISTICAS: 
 
Resistente a las bajas temperaturas - Irrompible - Impermeable - No tóxico. 
 
 
 
 15
 
PEBD. (LDPE) Polietileno de baja densidad. 
 
A temperaturas de unos 170 º centígrados y 1.400 atmósferas de 
presión el etileno se transforma en un polímero con aspecto de polvillo 
blanco, estructura muy ramificada (amorfa, algunos de los carbonos, en 
lugar de tener hidrógenos unidos a ellos, tienen asociadas largas 
cadenas de polietileno) y densidad comprendida entre 0' 91-0,93 kg/dm3. 
 
 
USOS Y APLICACIONES: 
 
El PEBD , polietileno de baja densidad, se utiliza para fabricar bolsas flexibles , embalajes 
industriales , techos de invernaderos agrícolas... También gracias a su resistencia dieléctrica se 
utilizan para aislante de cables eléctricos. 
 
Recubrimiento del hormigón fresco, evitando la evaporación prematura del agua y 
preservándolo de las heladas. Revestimiento de encofrados, facilitando el desmoldeo y dando 
un perfecto acabado al cemento. 
 
 
CARACTERISTICAS: 
 
Gran flexibilidad, extraordinaria resistencia química y dieléctrica, resistente a las bajas 
temperaturas, irrompible, impermeable y no tóxico. Es versátil, barato y fácil de fabricar. Se 
transforma por inyección, soplado, extrusión, o rotomoldeo. 
 
 
 16
 
 
PP 
Polipropileno 
 
 
 
 
 
Es un termoplástico que se obtiene por polimerización del propileno. 
Los copolímeros se forman agregando etileno durante el proceso. 
 
 
USOS Y APLICACIONES: 
 
Soporta bien temperaturas cercanas a los 100 ºC por lo 
que se utiliza para tuberías de fluidos calientes . 
 
Piezas de automóviles (parachoques) y electrodomésticos, 
cajas de baterías , jeringas desechables, tapas en general, 
envases, baldes, todo tipo de cartelería interior y exterior. 
 
Al tener una estructura lineal se utiliza para rafias y 
monofilamentos , fabricación de moquetas , cuerdas , 
sacos tejidos , cintas para embalaje, pañales 
desechables... 
 
 
CARACTERISTICAS: 
 
Plástico rígido de alta cristalinidad y elevado Punto de Fusión, excelente resistencia química y 
baja densidad (la más baja de todos los plásticos). Al adicionarle cargas (talco, caucho, fibra de 
vidrio...), se refuerzan sus propiedades hasta transformarlo en un polímero de ingeniería. Muy 
sensible al frío y a la luz ultravioleta (envejece rápidamente), por lo que necesita estabilizantes 
a la luz. 
 
Barato, resistente a la temperatura, y no tóxico. 
 
Es transformado en la industria por los procesos de inyección, soplado y 
extrusión/termoformado. Fácil manipulado, se puede cortar, perforar y troquelar. 
 
 
 17
4.1.2. Polimerizados del estireno. (poliestirenos, copolímeros ABS y ASA, etc.) 
 
 
 
 
PS 
Poliestireno 
 
 
 
 
 
 
 
El poliestireno estructuralmente, es una larga cadena hidrocarbonada, 
con un grupo fenilo unido cada dos átomos de carbono. 
 
Las materias primas para la fabricación del estireno son el etileno y el 
benzeno 
 
Hay tres clases de poliestireno: 
 
- PS Cristal : Es un polímero de estireno monómero (derivado 
del petróleo), cristalino y de alto brillo. 
 
- PS Alto Impacto : Es un polímero de estireno monómero con 
oclusiones de Polibutadieno que le confiere alta resistencia al 
impacto. 
 
- PS expandido que es una espuma. 
 
Es Termoplástico y fácilmente moldeable a través de procesos de: 
Inyección, Extrusión/Termoformado, Soplado. 
 
USOS Y APLICACIONES: 
 
Se usa en envases, vasos, platos y cubiertos desechable, neveras portátiles, máquinas de 
afeitar desechables, juguetes, cassettes, aislantes térmicos y acústicos ... 
 
 
CARACTERISTICAS: 
 
Ignífugo - No tóxico - Transparente - Irrompible - Fácil limpieza. 
Fácil de serigrafiar. 
Fácil de manipular, se puede cortar, taladrar, perforar, troquelar 
 
 
 18
 
 
 
 
Acrilonitrilo-
butadieno-estireno. 
ABS . 
 
 
 
 
 
 
 
Termoplástico. 
El ABS fue desarrollado para conseguir altas fluideces y rigidez a la vez 
que un buen comportamiento al impacto, caracteristicas que no cumplía 
el PS, por lo que se mezcló con cauchos. 
 
Se podría definir el ABS como un copolímero del PS con cauchos . 
Nace de la polimerización de tres elementos: 
 
- El acrilonitrilo aporta buena resistencia química, brillo, resistencia 
térmica y resistencia al desgaste. 
- El butadieno le confiere buen comportamiento al impacto. 
- El estireno aporta moldeabilidad y buena estabilidad dimensional (el 
contenido varía entre un 65 y 80%). 
 
CARACTERISTICAS: 
 
Buena resistencia al impacto (a altas y bajas temperaturas). 
Excelente rigidez. 
Excelente brillo y aspecto superficial. 
Resistencia al rayado. 
Buena resistencia a los agentes químicos. 
Excelente procesabilidad. 
Existe ABS para cromar. 
 
USOS Y APLICACIONES: 
 
Industria : es utilizado para piezas de teléfonos, radios, aspiradoras, y grandes 
electrodomésticos, griferías, radiadores... 
 
Eléctrico : sus aplicaciones van desde aparatos de fax, carcasas de los monitores de 
ordenador y de aparatos eléctricos en general, enchufes, ... 
 
Automóvil : se utilizan tipos anticalóricos reforzados con fibra de vidrio, cromables, etc. en 
retrovisores, piezas eléctricas, parrillas de radiadores, en los mandos de control, ... 
 
 
 
 
 19
 
Acrilonitrilo-estireno. 
SAN. 
 
 
 
 
Termoplástico. 
El SAN fue desarrollado para conseguir altas fluideces y rigidez a la vez 
que un buen comportamiento al impacto y transparencia, caracteristicas 
que no cumplía el PS ni el ABS. 
 
Se podria definir como un PS mezclado con cauchos, o un copolímero 
de estireno/acrilonitrilo. 
CARACTERISTICAS: 
 
Resistente a altas temperaturas y al ataque de agentes químicos. 
Excelentes propiedades mecánicas 
Fácil procesabilidad 
Muy buena transparencia 
Buena estabilidad dimensional. 
 
USOS Y APLICACIONES: 
 
Industria: 
Encendedores: por su transparencia y buena resistencia al ataque de los agentes 
químicos. 
Cubre lámparas, por su transparencia y buenas propiedades mecánicas, pudiendo 
ser aditivado contra los rayos UV. 
Embalajes de todo tipo, como recipientes de cocina que requieran aptitud 
alimentaria, transparencia, y o buen comportamiento a bajas temperaturas. 
Piezas interiores de neveras. 
Ventiladores de aire acondicionado. 
 
Electricidad: 
Carcasas de secadoras, piezas de aparatos de TV, cajas de baterias. 
Aparatos de vídeo, se utiliza por su extraordinaria rigidez y elevada temperatura de 
distorsión. 
 
 
Plásticos de estireno-butadieno. SBP. Termoplástico. 
 
- Copolímeros de estireno-butadieno. También llamados hules sintéticos. Contienen un 25% de 
estireno y un 75% de butadieno y se utilizan en la fabricación de llantas, espumas, aislamiento 
de alambres y cables eléctricos, mangueras.... 
 
Los copolímeros de estireno-butadieno con mayor contenido de butadieno, hasta de 60%, se 
usan para hacer pinturas y recubrimientos ahulados. Para mejorar la adhesividad, en 
ocasionesse incorpora el ácido acrílico o los ésteres acrílicos, que elevan la polaridad de los 
copolímeros. 
 
 
 
- MBS: Se obtienen injertando metacrilato de metilo o mezclas de metacrilato y estireno, en las 
cadenas de un hule de estireno-butadieno. 
 
- Acrílicos: Copolímeros de metacrilato-butilacrilato-estireno o de metacrilato-hexilacrilato-
estireno. 
 
- Otros copolímeros importantes del estireno, se realizan polimerizando en suspensión, 
estireno en presencia de divinil-benceno, para obtener materiales entrecruzados, que por 
sulfonación y otras reacciones químicas se convierten en las conocidas resinas de 
intercambio iónico. 
 
- CPE. Los polietilenos clorados se obtienen clorando polietileno de alta densidad con 30% a 
40% de cloro. Tienen baja cristalinidad y baja temperatura de transición vítrea. 
 
- EVA. Copolímero del etileno y acetato de vinilo con 30% a 50% del acetato, posee 
propiedades elastoméricas. 
 20
4.1.3. Polímeros halogenados. (policloruros de vinilo, copolímeros vinílicos, 
politetrafluoretileno o teflón, polifluoruro de vinilo, etc.). 
 
 
 
PVC. Cloruro de polivinilo 
 
Se produce a partir de dos materias primas naturales: gas 43% y sal 
común (*) 57%. 
 
 
 
 
 
 
Estructuralmente, el PVC es similar al polietileno, con la diferencia que 
cada dos átomos de carbono, uno de los átomos de hidrógeno está 
sustituido por un átomo de cloro. 
 
A este polímero termoplástico es necesario añadirle aditivos, 
plastificantes, elastificantes, cargas y otros polímeros para que 
adquiera las propiedades que permitan su utilización en las diversas 
aplicaciones . 
 
Así, puede ser flexible o rígido; transparente, translícido o 
completamente opaco; frágil o tenaz; compacto o espumado . 
 
El PVC rígido no lleva aditivos plastificantes . El flexible o plastificado, 
sí los lleva . 
 
 
USOS Y APLICACIONES: 
 
Envases. 
Perfiles para marcos de ventanas, puertas. 
Tuberías de desagües, mangueras, aislamiento de cables. 
Juguetes, envolturas para golosinas, películas flexibles para 
envasado, papel vinílico (decoración)... 
Objetos termoconformados industriales y domésticos. 
Tableros para mesas de trabajo y estanterías para laboratorios. 
Aparatos electrodomésticos. 
 
 
 
 
 
 
CARACTERISTICAS: 
 
Su capacidad para admitir todo tipo de aditivos permite que pueda adquirir propiedades muy distintas y 
teniendo en cuenta su precio relativamente bajo le hace ser un material muy apreciado y utilizado para 
fabricar multitud de productos . 
 
Ignífugo (con altas temperaturas los átomos de cloro son liberados, inhibiendo la combustión). 
 
Resistente a la intemperie, no tóxico, impermeable y no quebradizo. 
 
Buenas propiedades de aislamiento. 
 
Fácil de manipular, se puede cortar, taladrar, clavar, enroscar, perforar, pegar... 
 
Resistente a los agentes químicos y corrosivos. 
 
 21
 
Politetraflúoretileno. PTFE. Termoplástico. 
Las resinas fluoruratas son materiales termoplásticos producidos en los Estados Unidos a partir 
del 1950 y han tenido un gran éxito por sus características especialísimas. La más importante de 
las resinas fluorurate es el politetrafluoroetileno que se suministra generalmente en forma de 
semielaborado, sucesivamente trasformado con elaboración mecánica y al utensilio. Las resinas 
fluoruratas tienen diferentes aplicaciones que van desde los equipos para laboratorio a las fibras 
y a las películas especiales. Las características autolubricantes y antiroce rinden precioso el 
politetrafluoroetileno en la fabricación de engranajes industriales, prótesis quirúrgicas, 
revestimientos de baterías de cocina. Se emplea también en la fabricación de bombas, válvulas, 
filtros y elementos para vehículos espaciales. 
 
 
Polifluoruro de vinilo. PVF. Termoplástico. 
 
 
 
 
4.1.4. Ésteres de polivinilo y polimetacrilo. (poliacetato de vinilo, polimetilmetacrilato o 
plexigás; vidrio acrílico, etc.). 
 
 
 
Polimetacrilato de 
metilo. PMMA. 
 
 
 
 
 
 
 
 
 
Termoplástico. 
 
 
 
 
 
 
 
 
 
Comercializado bajo la marca Plexiglas. 
 
CARACTERISTICAS: 
 
Gran transparencia , además de elevada rigided y tenacidad , buena resistencia química , fácil moldeo , 
y buen comportamiento dieléctrico. 
 
Se pueden obtener planchas por colada entre dos planchas de vidrio para después ser mecanizadas . 
 
Para aumentar la dureza y evitar el rayado de las lentes se les dá un tratamiento de fluoración 
 
 
USOS Y APLICACIONES: 
 
Parabrisas y ventanas de aviones, portillos de barcos , claraboyas . 
 
Al ser un material muy transparente, se utiliza también en óptica, lentes de máquinas fotográficas, gafas. 
 
 
 22
 
4.1.5. Óxidos, sulfonas y similares. Polímeros con cadena de constitución mezclada –
heteropolímeros. 
 
 
PET 
Polietileno Tereftalato 
 
Se produce a partir del Ácido Tereftálico y Etilenglicol, por 
policondensacion; existiendo dos tipos: grado textil y grado botella.
 
 
 
 
USOS Y APLICACIONES: 
 
Envases de gaseosas, aceites, agua mineral, salsas...( Para el grado botella se lo debe post condensar, 
existiendo diversos colores para estos usos). 
Fibras textiles, Cintas de vídeo y audio, películas radiográficas... 
Geotextiles (telas para pavimentación). 
 
CARACTERISTICAS: 
 
Barrera a los gases - Transparente - Irrompible - Liviano - No tóxico. 
 
 
Politereftalato de 
butileno. PBT. 
 
 
 
Termoplástico. 
Se fabrica policondensado en la masa éster dimetílico del ácido 
tereftálico con 1,4-butadonil . 
CARACTERISTICAS: 
 
Alta resistencia a esfuerzos permanentes 
Alta indeformabilidad al calor, especialmente en los tipos reforzados con fibras de vidrio 
Alta dureza 
Buen comportamiento deslizante y frente al desgaste 
Alta estabilidad dimensional y de forma (bajo coeficiente de dilatación térmica y escasa 
absorción de agua) 
Buenas características eléctricas 
Gran resistencia a los agentes químicos 
 
USOS Y APLICACIONES: 
 
Industria eléctrica y electrónica , debido a su buen comportamiento aislante, indeformabilidad al calor, 
estabilidad dimensional, resistencia a los agentes químicos y efectos ignífugos. Se emplea tanto en el 
sector de las piezas aislantes para extintores como en aislamientos primarios. 
 
Electrodomésticos , en los que cumple con las especificaciones adicionales en cuanto a 
indeformabilidad al calor, características aislantes, resistencia a los agentes químicos y al agrietamiento 
por tensión, así como calidad superficial. 
 
Mecánica de precisión y maquinaria , ruedas dentadas, cojinetes y otros elementos deslizantes gracias 
a su buen comportamiento deslizante y resistencia al desgaste 
 
Industria del automovil por su rigidez, indeformabilidad al calor, 
decorabilidad y resistencia a la intemperie. Se emplea tanto en 
aplicaciones interiores como exteriores. 
 
 
 23
 
 
 
 
Policarbonato. PC. 
 
Ter
mop
lásti
co. 
El policarbonato toma su nombre de los grupos carbonato en su 
cadena principal. También se denomina policarbonato de bisfenol 
A, porque se elabora a partir de bisfenol A y fosgeno. 
 
 
 
 
 
 
Es amorfo y transparente , aguanta una temperatura de trabajo 
hasta 135 ºC , y tiene buenas propiedades mecánicas , tenacidad , 
y resistencia química . 
CARACTERISTICAS: 
 
Virtualmente irrompible. Es 250 veces más resistente al impacto que el vidrio. 
Excelente comportamiento ante el fuego. 
Excelente transmisión de luz. 
Poco peso, menos de la mitad que el vidrio. (Considerando igual espesor). 
Curvable en frío. 
No propaga la llama. 
Aislante térmico (Valor K 2,7 en 6 mm.) 
Aislante acústico (clasificación STC=31 dB en 6 mm.) 
 
 
USOS Y APLICACIONES: 
 
Carcasas de protección para maquinaria y equipos peligrosos, viseras para protección de la cara. 
Tapas para cuadros eléctricos y de mandos, cristaleras irrompibles para casetas de obra,coches 
blindados. Protección antichoque para iluminación de seguridad y emergencia. 
Señalización urbana y de carretera, letreros, protección de luminosos de neón. 
 
 
 24
Poliamidas. PA. 
 
 
 
Termoplástico. 
En 1.930 se descubrió un polímero con el que se podían hacer hebras 
de gran resistencia, era la primera poliamida 6.6, que se comercializó 
con el nombre de Nylon . 
 
En 1.938 se obtuvo la polimerización de la PA 6, que se comercializó 
con el nombre de Perlon. 
 
Se denominan poliamidas, debido a los característicos grupos amida en 
la cadena principal. Las proteínas (como la seda), también son 
poliamidas. 
 
CARACTERISTICAS: 
 
Las poliamidas presentan unas propiedades físicas próximas a las de los metales como la 
resistencia a la tracción entre 400 - 600 kg/cm2 . 
 
Bajo peso específico entre 1' 04 y 1' 15. 
Fácil moldeo 
Resistencia a temperaturas de trabajo de hasta 1200 ºC . 
Rigidez y resistencia al desgaste, deformaciones y a elevadas temperaturas. 
Buena resistencia química salvo a ácidos concentrados. 
Buenas propiedades mecánicas y eléctricas. 
 
Tienen un inconveniente , su higroscopidad . Absorven agua en un porcentaje variable , esto hace 
que disminuyan sus propiedades mecánicas , y aumentan el volumen al hincharse . 
 
 
USOS Y APLICACIONES: 
 
Piezas que exigen buen coeficiente de rozamiento y buena resistencia al desgaste. 
Piezas que precisen mecanizado con torno automático. 
Piezas técnicas sometidas a choques, sacudidas e inversiones de sentido. 
Rodillos y cintas transportadoras. 
Cojinetes, piezas sometidas a frotamiento. 
Engranajes, elementos de transmisión. 
 
 
 
 
 25
4.2. Polímeros termoestables. 
 
También llamados durómeros o duroplastos. Son aquellas materias poliméricas que por la 
acción del calor o mediante endurecedores apropiados, endurecen de forma irreversible 
y al fundirse se descomponen químicamente. Están formados por macromoléculas 
reticuladas en el espacio, que en el proceso de endurecimiento, o de curado, se reticulan más 
estrechamente. 
 
A partir de materias primas de bajo peso molecular se forman, en una primera fase, un 
producto intermedio (prepolímero), de peso molecular intermedio, no reticulado o muy poco y 
por tanto todavía capaz de fundir (y por tanto de rellenar un molde). La reticulación espacial 
que da lugar a la formación de la macromolécula termoestable tiene lugar por reacción química 
(curado) durante el moldeo de la pieza, es decir, durante el proceso de transformación. 
 
Puesto que no funden y no reblandecen son materiales que presentan muy buenas 
propiedades a elevadas temperaturas. Junto con su alta resistencia térmica presentan alta 
resistencia química, rigidez, dureza superficial, buena estabilidad dimensional, etc. 
 
Los acabados son pobres comparados con los de la mayoría de los termoplásticos; por lo 
general las resinas termoplásticos son bastantes opacas y en muchos casos presentan cierta 
coloración amarillenta. 
 
Sin embargo el empleo de estos materiales ha ido disminuyendo en los últimos años, pues 
requieren métodos de transformación lentos debido a que la reacción de polimerización tiene 
lugar durante la transformación. 
 
 
 
4.2.1. Fenoplastos o resinas fenólicas (bakelitas, novolacas, resitas). 
 
Fenol-formol. PF. Termoestable. 
 
 
Las resinas fenólicas son las mas antiguas y aún hoy las mas usadas entre las resinas 
termofraguantes. Las desarrolló, como es sabido, L. H. Baekeland en el 1909 y tuvieron un 
gran éxito sobre todo en el periodo entre las dos guerras mundiales. Las masas de estampado 
fenólico se usan para fabricar elementos de la industria eléctrica, en radio, en televisión, en 
teléfonos y en la industria automovilística; además se fabrican piezas para el sector de los 
electrodomésticos, en el sector aerospacial y en la defensa. 
 
4.2.2. Aminoplasto o resinas de urea o melanina con formaldehído. 
 
Urea-formol. UF. Termoestable. 
Son compuestos termofraguantes que se obtienen mediante la reacción de a urea con la 
formaldehído. Alrededor de 1929 estas resinas habían alcanzado un apreciable desarrollo 
comercial gracias a sus propiedades y al bajo costo. Como las melanímicas. Tienen el aspecto 
de un polvo finísimo blanco que se elabora generalmente por estampado a compresión dentro 
de un molde y con la acción del calor. El principal empleo de las resinas uréicas es el campo 
de los adhesivos y de las colas; como masas de estampado se utilizan para producir platos, 
partes de electrodomésticos, componentes eléctricos, teléfonos, aparatos radio, muebles. 
 
 
 
Melamina-formol. MF. Termoestable. 
Las resinas melamínicas, como las uréicas, pertenecen al grupo de compuestos 
termofraguantes llamados aminoplasta. Las melamínicas se produjeron en forma industrial a 
partir del final de los años Treinta. Tienen una importancia fundamental en la fabricación de 
laminados y también para vajillas, platos, partes de electrodomésticos, muebles, artículos 
decorativos y elementos de aislamiento. 
 26
4.2.3. Otras resinas. 
 
Resinas reactivas, también denominadas resinas de reacción líquidas. Su constitución química 
es tal que pueden reticularse bajo la acción de un catalizador o de un endurecedor y pasan del 
estado líquido al sólido. Esta reacción se produce sin necesidad de aportación de calor y, 
frecuentemente, exotérmica. 
 
A la resina de base se le suele añadir aditivos modificadores, cargas neutras u otras materias 
para conseguir algún objetivo concreto; la mezcla puede ser reforzada con fibras de diversa 
índole. Se utilizan como adhesivos, conglomerantes de áridos, resinas de colada y como 
material para inyección de obras de fábrica o del terreno. 
 
Los tipos principales de resinas reactivas son: 
 
- Resinas epoxídicas: • Resinas epoxi. 
 • Resinas epoxi-acrílicas y otras. 
- Resinas de poliéster no saturado. 
- Resinas de metilmetacrilato (furánicas). 
- Resinas de isocianato (poliuretano). 
 
RESINAS EPOXI. 
EP. 
 
 
 
 
 
Termoestable. 
Las resinas epoxi son resinas sintéticas caracterizadas por poseer en su 
molécula uno o varios grupos epoxi que pueden polimerizarse, sin aportación de 
calor, cuando se mezclan con un agente catalizador denominado "agente de 
curado" o "endurecedor". Por sí solas no tienen aplicación práctica. 
 
La inmensa mayoría de las resinas epoxi empleadas en la construcción son 
productos de condensación que resultan de las epiclorhidrina con compuestos 
de varios grupos fenólicos, generalmente con el difenol-propano, conmúnmente 
conocido con el nombre de bisfenol A. 
CARACTERISTICAS: 
 
Los sistemas epoxi se componen de dos elementos principales: resina y endurecedor, a los que 
pueden incorporarse agentes modificadores (diluyentes, flexibilizadores, cargas...), para modificar 
alguna propiedades físicas o químicas del sistema de resina o abaratarlo. 
 
- Resinas de base. 
 
Las resinas epoxi pueden clasificarse en: - Éteres glicéricos. 
- Esteres glicéricos. 
- Aminas glicéricas. 
- Alifáticas lineales. 
- Cicloalifáticas. 
 
- Endurecedores. 
 
El endurecimiento de una resina puede hacerse con un agente (una molécula epoxi se une a otra en 
presencia del catalizador) o con un endurecedor (el reactivo endurecedor o agente de curado se 
combina con una o más moléculas de resina). 
 
Los agentes catalizadores más empleados son las bases fuertes tales como aminas terciarias o 
materiales fuertemente aceptores de protones, como el trifluoruro de boro. 
 
Los reactivos endurecedores pueden clasificarse en: 
 
- Agentes de curado en frío. Reaccionan con las resinas a temperaturas ordinarias o bajas, en 
atmósferas particularmente húmedas; de este grupo son: las aminas alifáticas primaria, laspoliaminas, las poliamidas y los polisocianatos. 
 
- Agentes de curado en caliente. Los más empleados son los anhídridos orgánicos, las aminas 
primarias y aromáticas y los catalizadores, que son inactivos a temperaturas ordinarias, pero que se 
descomponen en componentes activos al calentarlos. 
 
USOS Y APLICACIONES: 
 
Se emplean para coladas, revestimientos, estratificados, encapsulados, prensados, extrusionados, 
adhesivos y en otras aplicaciones de conglomeración de materiales. 
 
 27
4.2.4. Poliésteres. 
 
Las resinas de poliester constituyen una familia bastante diferenciada y compleja de resinas 
sintéticas que se obtienen con una grande variedad de materias primas de partida. Las resinas 
poliester insáturas son líquidos más o menos viscosos de color amarillo pajizo que endurecen 
con el añadido de catalizadores. Su robusteza, flexibilidad y rigidez pueden ser modificadas 
con el añadido de aditivos, refuerzos que normalmente pueden ser fibra de vidrio o de carbono. 
Se emplean en la construcción civil, para conducturas, compuertas, puertas y ventanas, 
encofrado, vidrios, paneles decorativos; en la náutica más del noventa por ciento de los barcos 
está construido con resinas poliester reforzado y hoy en día se fabrican también unidades de 
guerra como por ejemplo los dragaminas y botes para el servicio guardacostas. En la industria 
de los transportes se fabrican con las resinas de poliester reforzado partes de autobuses, 
furgones, máquinas agrícolas, roulotte, vagones de ferrocarril. Hay numerosos otros empleos 
que van desde los botones a los trineos, a los aislantes eléctricos. 
 
 
4.2.5. Poliuretanos y similares. 
 
- El poliuretano es un material plástico que nace de la reacción química entre dos componentes 
líquidos: el Poliol y el Isocianato. Intervienen además: 
 
Catalizadores: Se utilizan para acelerar o retardar la reacción entre el poliol y el isocianato y, 
por tanto, poder controlar la formación de la espuma. 
 
Aditivos y cargas: Son materiales que por sus características, mejoran determinadas 
propiedades físicas y mecánicas de la espuma de poliuretano. Algunos de ellos son: los 
antioxidantes, los blanqueadores ópticos, los estabilizadores térmicos, etc. 
 
Agentes espumantes: Los agentes espumantes debido a sus propiedades físicas son 
excelentes hinchantes y los encargados de dar volumen. Estos agentes se evaporan en forma 
de gas tras la expansión de la espuma debido a su bajo punto de ebullición y utilizando el calor 
generado por la reacción poliol-isocianato. 
 
Dependiendo de la composición de la mezcla poliol-isocianato, y de su densidad, obtendremos 
poliuretanos con diferentes características: 
 
- espuma rígida. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
- espuma rigida para aislamiento 
 
Los sistemas de poliuretano vienen utilizándose en el sector 
de la construcción desde hace más de 25 años en todo el 
mundo, tanto para el aislamiento térmico como para la 
impermeabilización. Y su utilización sigue en alza debido a 
la posibilidad de impermeabilizar y aislar con rapidez de 
ejecución, sin intervenir en el proceso normal de la 
obra . No obstante, existen muchas otras ventajas que a 
continuación se presentan. 
 28
Características: 
 
Impermeabilidad y aislamiento térmico en una sola operación. 
Material con el más bajo coeficiente de conductividad térmica (l = 0,027 W/mº C). 
Ligereza de peso disminuyendo la carga de la estructura. 
Buena resistencia a la compresión (de 1 a 3 Kg/cm2), lo que permite su utilización en 
azoteas transitables con acabado tradicional. 
Eliminación de las condensaciones en general y, en especial, las que se presentan en 
superficies metálicas. 
Evita la formación de humedades por la condensación, ya que establece una barrera 
térmica que impide que el tabique interior alcance bajas temperaturas y que se condense la 
humedad ambiente del interior. 
 
 
 
 
 
 
 
 
 
 
 
- espuma flexible (Asientos para coches, 
 
- un elastómero( Pavimentos, Adhesivos y ligantes, Suelas, ruedas, juntas 
 
- espuma semirrígida (Asientos para bicicletas, motos, sillines para tractores, 
apoyabrazos, volantes, parasoles, parachoques de coches y autobuses. Sillas de 
oficina, asientos. 
 
- Pinturas y barnices de poliuretano 
 
 
Proyección: La mezcla sale de la máquina 
perfectamente homogeneizada y finamente 
pulverizada. La mezcla se aplica sobre el sustrato 
con equipos específicos, sin interrupciones. En este 
método se utilizan sistemas de reactividad 
controlada para obtener la fase de expansión y 
endurecimiento de la espuma rápidamente. La 
proyección se utiliza en la impermeabilización y en la 
aplicación de aislamientos sobre superficies 
inclinadas, verticales y horizontales, sin producirse 
deslizamiento ni goteo del material. 
 
 29
 
 
Poliuretanos. PU. 
 
 
Termoplástico. 
Son polímeros obtenidos mediante la poliadición de los isocianato y de 
los poliol. Se llaman así porque en su cadena principal contienen 
enlaces uretano. 
 
 
Es un excelente plástico de uso industrial que abarca un abanico de 
durezas tan amplio, que puede alcanzar los valores de los cauchos más 
blandos y los de los poliamidas más duras, manteniendo siempre su 
gran elasticidad. 
CARACTERISTICAS: 
 
Resistente a aceites y grasas. 
Resistente a la rotura. 
Gran elasticidad. 
Resistente a la abrasión. 
Excelente amortiguador de ruidos y vibraciones. 
Excelente comportamiento frente a la deformación por presión. 
USOS Y APLICACIONES: 
 
Componen la familia más versátil de polímeros que existe. Pueden ser elastómeros, pinturas, fibras y 
adhesivos. 
 
Se utilizan en forma flexible para fabricar cojines, colchones, muebles, revestimientos de tejidos 
 
En forma rígida para empleos en la industria automovilística, construcción civil, amueblado. 
 
Zapatas guía de ascensores por su gran resistencia a la abrasión, grasas y aceites. 
Apoyos de separación y apilamiento de maquinaria y matrices pesadas. 
Ruedas para carretillas elevadoras. Poleas y guías para cables. 
Rodillos para industria textil. 
Regletas para serigrafía. Troqueles y contra - troqueles para la estampación. 
 
Son un aislante térmico y acústico de óptima calidad. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 30
4.2.6. Polímeros silicónicos 
 
 
Siliconas (SI). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Termoplástico. 
Las siliconas son polímeros inorgánicos (no contienen átomos de carbono 
en su cadena principal). 
Esta es una cadena alternada de átomos de silicio y de oxígeno. Cada 
silicona tiene dos grupos unidos a la misma y éstos pueden ser grupos 
orgánicos. 
 
 
 
 
 
 
 
 
 
CARACTERISTICAS: 
 
Las siliconas constituyen buenos elastómeros porque la cadena principal es muy flexible. Los enlaces 
entre un átomo de silicio y los dos átomos de oxígeno unidos, son altamente flexibles. El ángulo formado 
por estos enlaces, puede abrirse y cerrarse como si fuera una tijera, sin demasiados problemas. Esto 
hace que toda la cadena principal sea flexible. 
 
 
 
 
 
USOS Y APLICACIONES: 
 
El tamaño de los polímeros y el grado de entrecruzamiento pueden 
regularse según las propiedades que se desee en la silicona. 
 
Las siliconas lineales son muy resistentes al calor y su viscosidad 
apenas varía con la temperatura, por lo que tienen una gran 
aplicación como lubricantes (aceites multigrado) y líquidos para 
frenos. 
 
Las siliconas entrecruzadas pueden vulcanizarse obteniéndose 
caucho de silicona, o bien resinas sólidas, que tienen numerosas 
aplicaciones por su resistencia al calor y a los agentes químicos, 
así como por sus propiedades aislantes. 
 
Otra propiedad importante de las siliconas es que repelen el agua, 
por lo que se utilizan mucho para fabricar tejidos o papeles 
impermeables, así como para recubrir con una fina capa los 
aisladores utilizados en electrónica. 
 
 
 
 31
4.3. Polímeros elastómeros: Cauchos y gomas. 
 
Elastómeros, son sustancias constituidas por macromoléculas líneales unidas entre si 
transversalmente,por puentes de enlace (reticulación suelta). 
 
En los elastómeros o cauchos las cadenas de polímero se encuentran enrolladas y retorcidas 
de forma arbitraria, al azar, lo que les confiere gran flexibilidad para permitir que el material sea 
capaz de soportar deformaciones muy grandes. 
 
El proceso de curado por el que estos polímeros son entrecruzados se suele conocer como 
vulcanización. 
 
Son materiales muy tenaces, resistentes a aceites y grasas, al ozono, y presentan buena 
flexibilidad a bajas temperaturas; de hecho, todos los elastómeros tiene temperaturas de 
transición vítrea inferiores a la temperatura ambiente. Presentan, sin embargo, algunas de las 
desventajas de los termoestables: requieren un procesado lento, lo que consume grandes 
cantidades de tiempo y energía. 
 
Esto ha llevado a que en los últimos años se haya desarrollado un grupo de elastómeros 
conocidos como elastómeros termoplásticos (TR). Estos elastómeros termoplásticos pueden 
estar reticulados de forma química o física. 
 
- Químicamente: la reticulación se deshace a temperaturas altas, convirtiéndose en 
termoplásticos amorfos o semicristalinos que, cuando la temperatura sigue 
aumentando, adquieren consistencia termoplástica. Tiene, por tanto el comportamiento 
de uso de los elastómeros y el comportamiento de fusión de los termoplásticos. 
 
- Físicamente: consiste por lo general en una mezcla de una matriz termoplástica, 
generalmente PP, mezclada con un caucho, por lo general EPDM. En este caso la 
matriz termoplástica permite que el material funda y sea moldeado, mientras que las 
partículas de caucho contribuyen dando tenacidad y elasticidad al material. 
 
En general la capacidad de deformación de los elastómeros termoplásticos es menor que la de 
los demás elastómeros (elastómeros permanentes). 
 
 
 
 
 
 
 
 32
5. MOLDEO. 
 
El moldeo de los plásticos consiste en dar las formas y medidas deseadas a un plástico por 
medio de un molde. El molde es una pieza hueca en la que se vierte el plástico fundido para 
que adquiera su forma. 
 
 
 
5.1. El moldeo rotacional 
 
Se moldean por rotación artículos huecos mediante el llenado 
de moldes abiertos, huecos, con material en polvo o pasta y, 
después de que ha gelificado o fundido una capa 
suficientemente gruesa de material, se vierte el resto. 
 
La maquinaria para el sistema de moldeo rotacional consta de 
dos ejes cruzados, en el segundo de los cuales van montados 
los moldes. Se les aplica calor y al rotar sobre los ejes 
distribuyen el material uniformemente por las paredes. Al 
enfriarse, el material se solidifica o se ha vulcanizado, y se 
extrae la pieza endurecida. 
 
 
- Los moldes para recipientes grandes están hechos, generalmente, de chapa metálica de 1,5 
a 2 mm de espesor. Suelen fabricarse mediante aluminio colado y los más complejos se 
pueden obtener por electroformado a partir de cera o modelos de resinas de reacción. 
 
- Sistemas de calefacción. Las primeras máquinas para rotomoldeo de plásticos utilizaban 
calentamiento por llama directa, que se ha sustituído principalmente por cámaras de aire que 
se calienta en una zona independiente por llama o eléctricamente. 
 
- Sistemas de enfriamiento. El enfriamiento se suele realizar en otra cámara con aporte de aire 
enfriado o pulverización de agua. 
 
Otras aplicaciones incluyen la fabricación de cuerpos huecos posteriormente reforzados con 
fibras de vidrio/poliéster que se utilizan para producir depósitos de alta presión como, por 
ejemplo, filtros de piscina. 
 
 
5.2. Colada. 
 
La colada consiste en el vertido del material plástico en estado líquido dentro de un molde, 
donde fragua y se solidifica. La colada es útil para fabricar pocas piezas o cuando emplean 
moldes de materiales baratos de poca duración, como escayola o madera. Debido a su lentitud, 
este procedimiento no resulta útil para la fabricación de grandes series de piezas. 
 
 
5.3. Espumado. 
 
Consiste en introducir aire u otro gas en el interior de la masa de plástico de manera que se 
formen burbujas permanentes. Por este procedimiento se obtiene la espuma de poliestireno, la 
espuma de poliuretano (PUR), etc. con los que se fabrican colchones, aislantes termo-
acústicos, esponjas, embalajes, cascos de ciclismo y patinaje, plafones ligeros y otros. 
 
En los últimos años, las espumas plásticas han adquirido una importancia económica 
progresiva, sobre todo desde el momento en que muchos plásticos admiten la espumación: 
polimerizados (por ejemplo Polietileno, Poliestireno y PVC), policondensados (Fenoplastos, 
Aminoplastos, Poliésteres, Resinas epoxy) y poliaductos (Poliuretanos). 
 
 33
Además, los plásticos celulares no requieren procesos de fabricación especiales. Se pueden 
obtener directamente por inyección, extrusión o calandrado. 
 
 
 
5.4. Moldeo a presión. 
 
 
Son procesos en los cuales los plásticos se introducen a presión en los moldes. 
 
 
5.4.1. Moldeo a Alta Presión. 
 
Se realiza mediante máquinas hidráulicas que ejercen la presión suficiente para el moldeado 
de las piezas. Básicamente existen tres tipos: compresión, inyección y extrusión. 
 
 
5.4.1.1. Prensado. 
 
El plástico en polvo es calentado y comprimido entre las dos partes de un molde mediante la 
acción de una prensa hidráulica. 
 
El prensado de plásticos se inició a principios de este siglo principalmente gracias a la 
comercialización de la Baquelita (aminoplastos con refuerzo de pulpa de papel o madera), 
debido principalmente a sus aplicaciones en la industria eléctrica. 
 
 
Son materiales duros, de alta densidad y resistencia producidos al aplicar alta presión y 
temperatura a dos o más capas de papel o tejidos de algodón ( o vidrio, o amianto o fibras 
sintéticas) que están impregnadas con resinas termoestables (resina fenólica 
fundamentalmente). 
 
Cuando el calor y la presión son aplicadas a las capas impregnadas, una reacción química 
(polimerización) las transforma en una masa sólida. Estos materiales entran dentro del grupo 
de los llamados MATERIALES COMPUESTOS, y dada la diferente combinación que puede 
hacerse de sus componentes (papel, telas, fibras sintéticas, vidrio) se obtienen productos muy 
diversos para múltiples aplicaciones. 
 34
El mismo procedimiento se emplea también para obtener planchas gruesas a partir de un 
número de capas finas de termoplásticos calandrados, que se extraen de la prensa de platos 
múltiples calentados después del enfriamiento. 
 
Otro tipo de productos fabricados mediante prensado en caliente son los laminados fenólicos 
con superficie de melamina, descrita en la norma DIN 16926, en los que se suele utilizar como 
molde planchas metálicas pulidas que pueden tener una superficie grabada. 
 
Existen algunos termoplásticos que no pueden transformarse por los procedimientos 
habituales, como el PTFE, con una viscosidad muy elevada y una gran sensibilidad al 
cizallamiento. Al no ser viable el moldeo por inyección o extrusión, el PTFE en polvo se 
conforma a prensa a temperatura ambiente a 200-350 bar hasta logra una densidad de 2,1-3,2 
gr/cm y se sinteriza luego a 370-380 C. 
 
 
5.4.1.2. Inyección. 
 
Consiste en introducir el plástico granulado dentro de un cilindro, donde se calienta. En el 
interior del cilindro hay un tornillo sinfín que actúa de igual manera que el émbolo de una 
jeringuilla. Cuando el plástico se reblandece lo suficiente, el tornillo sinfín lo inyecta a alta 
presión en el interior de un molde de acero para darle forma. El molde y el plástico inyectado se 
enfrían mediante unos canales interiores por los que circula agua. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Este proceso está muy extendido, porque permite fabricar artículos moldeados de alta calidad, 
normalmente sin necesidad de ninguna operación posterior de acabado, incluso para piezas de 
formas complicadas que han de estar sometidas a tolerancias dimensionales estrictas. Se 
aplica, sobre todo, a los termoplásticos, y, en menor escala, a los elastómeros yalos 
termoestables. 
 
 
 
 
 
 
 
 
 
 
 35
5.4.1.3. Extrusión. 
 
 
Consiste en moldear productos de manera continua, ya que el material es empujado por un 
tornillo sinfín a través de un cilindro que acaba en una boquilla, lo que produce una tira de 
longitud indefinida. 
 
Cambiando la forma de la boquilla se pueden obtener barras de distintos perfiles. También se 
emplea este procedimiento para la fabricación de tuberías, inyectando aire a presión a través 
de un orificio en la punta del cabezal. Regulando la presión del aire se pueden conseguir tubos 
de distintos espesores. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Es un proceso contínuo utilizado para la fabricación de productos semiacabados tales como 
perfiles, tuberías, planchas y hojas, que deben someterse a acabado antes de ser puestos en 
servicio. 
 
 
 
 
 36
5.4.1.4. Soplado 
 
La fabricación de cuerpos huecos presenta problemas para la técnica de inyección de 
plásticos. Por ello, fuera de la técnica de moldeo rotacional que resulta lenta para la producción 
de envases y otros productos similares, se ha acudido a tecnologías multi-fase, en las que se 
fabrica primero un material tubular mediante extrusión o inyección y luego se modifica su forma 
bajo temperatura mediante la inyección de aire en un molde hueco cerrado frío, solidificándose 
el plástico en su forma definitiva al contacto con sus paredes. 
 
 
 
La extrusión soplado 
 
El uso de la extrusión para producir el elemento tubular a partir del que se forma el cuerpo hueco 
permite un mejor aprovechamiento de las posibilidades de los materiales multicapa, con lo que se 
consiguen envases en que la pared está compuesta por capas de distintos materiales que otorgan las 
características diferenciadas de barrera, resistencia a la radiación UV, características mecánicas o 
coloración. 
 
La extrusión permite una gran versatilidad de formas. En formas simples, es posible producir envases 
con asa incorporada que se sopla conjuntamente con el cuerpo del envase mediante un pinzamiento 
parcial de la preforma. 
 
 
 
Una extrusora sitúa un cuerpo tubular y plastificado entre las dos 
mitades abiertas de un molde. 
 
 
El molde se cierra, soldando por pinzamiento uno de sus extremos y se 
insufla aire a presión por el otro, lo que le obliga a adaptarse a las 
paredes refrigeradas del molde, adoptando su figura y convirtiéndose 
en un cuerpo hueco. 
 
 
Es el principal sistema para la fabricación de envases con plásticos 
biodegradables. 
 
 
 
 
 37
 
 
La inyección-soplado 
 
Primeramente se moldean por inyección las preformas 
con espesores de pared variables controlados. 
Posteriormente la preforma caliente es estirada de forma 
controlada y se inyecta finalmente aire para que el 
contacto con las paredes frías del molde endurezca el 
envase de modo casi instantáneo. 
 
La inyección-estirado-soplado 
nació para fabricar envases para 
bebidas carbónicas en materiales 
transparentes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5.4.2. Moldeo a Baja Presión. 
 
Se emplea para dar forma a láminas de plástico mediante la aplicación de calor y presión hasta 
adaptarlas a un molde. Se emplean, básicamente, dos procedimientos: 
 
- Se efectuar el vacío absorbiendo el aire que hay entre la lámina y el molde, de manera que 
ésta se adapte a la forma del molde. Este tipo de moldeado se emplea para la obtención de 
envases de productos en moldes que reproducen la forma de los objetos que contienen. 
 
- Se aplicar aire a presión contra la lámina de plástico hasta adaptarla al molde. Este 
procedimiento se denomina moldeo por soplado, como el caso de la extrusión, aunque se 
trata de dos técnicas totalmente diferentes. Se emplea para la fabricación de cúpulas, 
piezas huecas, etc. 
 
 
5.4.2.1. Calandrado. 
 
Consiste en hacer pasar el material plástico a través 
de unos rodillos calientes que producen, mediante 
presión, láminas de plástico flexibles de diferente 
espesor. Estas láminas se utilizan para fabricar 
hules, impermeables o planchas de plástico de poco 
grosor. 
 
 
 
 
 
 
 
 
 
 
 
El plástico es calentado y laminado entre dos o varios cilindros hasta formar una lámina 
continua. Al salir de la calandra, la lámina puede recibir un acabado complementario por 
estampado, gofrado, flocaje, impresión o metalizado. 
 
Este proceso se utiliza, sobre todo, para la fabricación de láminas en PVC y de tejidos 
recubiertos. No es adecuado para los plásticos demasiado flúidos en estado fundido, como es, 
por ejemplo, el caso del Polietileno. 
 38
6. PROPIEDADES. 
 
A pesar de la gran variedad en la composición y estructura que pueden presentar los distintos 
plásticos, hay una serie de propiedades comunes que poseen los plásticos y que los distinguen 
de otros materiales. 
 
 
6.1. Propiedades mecánicas. 
 
Las propiedades mecánicas de los plásticos tienen una estrecha relación con la temperatura. Al 
aumentarse ésta, las resistencias disminuyen. 
 
Esto es particularmente cierto para los termoplásticos, que se reblandecen a eIevadas 
temperaturas y se endurecen y vuelven más rígidos al enfriarse. Cuando se emplean 
termoplásticos debe tenerse en cuenta las temperaturas de utilización. Aumentar la proporción 
de plastificante puede tener el mismo efecto que aumentar la temperatura. Los termoestables, 
debido a su estructura interconectada en retícula, son un poco menos afectados por los 
cambios de temperatura. si bien algunos pueden. reblandecerse y endurecerse 
moderadamente al aumentar y disminuir las temperaturas. Los plásticos laminados y 
reforzados con base termoestable son menos afectados debido a que están estabilizados por 
el material de refuerzo. La variación de carga afecta a la resistencia. Al igual que muchos otros 
materiales, tales como la madera y el hormigón armado, muchos plásticos pueden aguantar 
cargas más elevadas. en tiempos de carga cortos o rápidos, que cuando las cargas se aplican 
lentamente o se dejan en carga durante largos períodos de tiempo. 
 
plastificantes y variaciones de carga. 
 
Lo mismo que otros materiales, los plásticos pueden fluir, esto es, deformarse continuamente 
bajo tensión. Esto puede ser importante o apreciable, según el nivel de esfuerzo y de 
temperatura. A elevados niveles de esfuerzo, la fluencia al principio es también elevada. luego 
durante un tiempo disminuye, pero finalmente empieza un incremento de velocidad, terminando 
por fallar. Estos elevados niveles de esfuerzo deben evitarse. 
 
Los termoplásticos son más sensibles a la velocidad de carga ya la fluencia que los 
termoestables, laminados y plásticos reforzados. Sin embargo, niveles demasiado altos de 
esfuerzo, temperaturas elevadas, o ambas cosas a la vez, pueden conducir a fracasos, como 
en la posible deformación de las tuberías que conducen fluidos calientes bajo presión, cuando 
se utilizan materiales no adecuados en condiciones incorrectas. 
 
Fabricación: Los procesos de fabricación pueden tener una gran influencia en la resistencia. En 
los termoplásticos extruidos tal como en tuberías, por ejemplo, las moléculas están en su 
mayoría orientadas en la dirección de la extrusión, y la resistencia es, por tanto, mayor en esta 
dirección que en la perpendicular. 
 
El mismo efecto direccional puede ocurrir en el moldeo por inyección. En la fabricación de 
fibras sintéticas de alta resistencia se utiliza deliberadamente esta orientación y alineamiento 
de moléculas. Aquí, las moléculas se alinean durante el estirado del hilo. De esto resulta que si, 
por ejemplo, la resistencia a la rotura del nylon es aproximadamente 700 kg/cm2 para los 
productos moldeados, aumenta hasta 4200 kg/cm2 para la fibra de nylon. Lo mismo ocurre en 
otros plásticos que pueden utilizarse tanto moldeados como en fibras. Los films extruidos 
pueden hacerse más resistentes y tenaces por estirado después de la extrusión. La fabricación 
puede debilitar o reforzar, según los casos. En piezas grandes moldeadas por inyección, por 
ejemplo, el plástico

Continuar navegando

Materiales relacionados

21 pag.
21 pag.
05Polímeros(2)

User badge image

Estudios Generales

32 pag.
apunte_07_-_polimeros_y_plasticos

User badge image

Estudiando Ingenieria

50 pag.
GRUPO 4

EE Duque De De Caxias

User badge image

Luis Alejandro Hurtado Quiñonez