Logo Studenta

movimiento_tierras

¡Este material tiene más páginas!

Vista previa del material en texto

fi ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS 
PROCEDIMIENTOS GENERALES 
DE CONSTRUCCIÓN 
Juan Tiktin 
MOVIMIENTO DE TIERRAS 
MOVIMIENTO DE TIERRAS 
* UTILIZACION DE LA MAQUINARIA 
* PRODUCCIONES Y CASOS PRACTICOS 
* COMPACTACION DE MATERIALES 
* UTILIZACION DE COMPACTADORES 
3ª Edición 
Septiembre 1997 
Prof. JUAN TIKTIN 
Dr. Ingeniero de Caminos, 
Canales y Puertos 
Foto Portada patrocinada por : EPSA INTERNACIONAL, S.A. 
Obras de Movimiento de Tierras de la línea de al1a velocidad (AVE) Madrid-Barcelonaa 
Es propiedad. Reservados todos los derechos 
© E.T.S . Ingenieros de Caminos, Canales y Puertos 
Servicio de Puhlicaciones 
Ciudad Universitaria s/n. Madrid 
I.S .B.N.: 84-7493-204- 1 
( 
( 
( 
( 
( 
( 
( 
( 
( 
f 
( 
( 
l 
PRÓLOGODELAUTOR 
Este libro pretende ser de utilidad a los estudiantes de ingeniería civil y a los ingenieros 
de obra. 
Los primeros deben ver en este texto una serie de criterios de formación con objeto de que 
den la importancia debida a las máquinas, en cuanto son elementos fundamentales en los 
distintos procesos constructivos y económicos de una obra, centrándose fundamentalmente en 
obtener una idea clara de las fases de trabajo de aquellas, método para calcular sus 
producciones y obtener su máxima utilidad. 
Al estudiar una obra hay que analizar las máquinas que se necesitan de acuerdo con el 
proceso constructivo que se va a realizar. Si bien es cierto que este no se debe desarrollar sin 
conocer las limitaciones de los medios disponibles en el mercado, porque el constructor se 
arriesga a batir records mundiales antieconómicos . 
Los ejercicios que figuran son el resultado de años de enseñanza en la Escuela de 
Caminos de Madrid, y han sido puestos en exámenes, resueltos en base a los conocimientos 
teóricos que se exponen en los capítulos. Los alumnos deben resolverlos sin leer la solución, 
sabiendo que su lectura no sirve para retener la teoría del capítulo. 
A los Ingenieros de Obra, se trata de inculcarles un espiritu científico para demostrar 
teóricamente lo que ya saben por su experiencia y de esta forma puedan extraer de las 
máquinas nuevas aplicaciones y desarrollos de procesos constructivos. 
En realidad cuando un Ingeniero conoce bien una máquina, enseguida se da cuenta de 
sus limitaciones, esto es lo verdaderamente importante y responde a la definición de 
Ingeniero : el que es capaz de desarrollar y progresar una técnica. 
A él van dedicados los casos prácticos y en la lectura de los ejercicios podrá encontrar 
casos parecidos que le hayan ocurrido y quizá le den nuevas ideas. 
r 
( 
( 
( 
r 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
r 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
l 
l 
l, 
l 
(. 
( 
l. 
e 
l 
l 
l, 
t. 
l 
t 
l 
c. 
.... 
" l. 
" l 
l 
INDICE 
CAPITULO 1.- CAMBIOS DE VOLUMEN EN EL MOVIMIENTO DE TIERRAS 
1.1 EL MOVIMIENTO DE TIERRAS .. ... . . . .. .. .. . .... .. . .. ..... .. .. . .. . ... .... . .. .. .. .. . .. . .. . . . .. . . ..... . .. . . . 1.1 
1.2 OBJETO DEL CAPITULO 
1.3 CAMBIOS DE VOLUMEN 
1.2 
1.2 
1.4 ESPONJAMIENTO Y FACTOR DE ESPONJAMIENTO .. . .. . .. . .. . . . ... ... ... . .. . .. . .. . .. . .. ..... ... . 1.4 
1.5 CONSOLIDACION Y COMPACTACION . . . . . . . .. . . .. . . . . . . . . . . . . . . .. . .. . . . .. . . . . . . . . . . . . . . . . . . ... . .. . . . . . . 1.6 
1.6 VALORES DEL ESPONJAMIENTO Y SU FACTOR ... .. .... .. . .. ...... ... .... .. .. ... ... .. .. .. ..... . .. . 1.7 
1.7 CONSIDERACIONES PRACTICAS EN EL EXTENDIDO DE CAPAS 1.9 
CAPITULO 2.- ECUACION DEL MOVIMIENTO 
2.1 OBJETO DEL CAPITULO ...... .. .. . .. .. ... .. .. . . ................... ... . ..... . ..... .. .. ... . .. ... .. . ... .. . . .... . 2.1 
2.2 ESFUERZO TRACTOR .. . .. .. .. .. . .. .. . .. .. .. . .. .. .. ... ... . .. .. .. .. . .. .. . .. .. .. .. .. . .. .. . .. .. .. .. . .. .. .. .. . .. .. . 2.1 
2.2.1 TRACCION DISPONIBLE 
2.2.2 TRACCION UTILIZABLE 
2.1 
2.2 
2.3 BALANCE ENTRE TRACCION DISPONIBLE Y UTILIZABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 
2.4 RESISTENCIA A LA TRACCION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4 
2.4.1 RESISTENCIA A LA RODADURA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4 
2.4.2 RESISTENCIA A LA PENDIENTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5 
2.4.3 RESISTENCIA A LA ACELERACION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2. 7 
2.4.4 RESISTENCIA AL AIRE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.8 
2.5 ECUACION DEL MOVIMIENTO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.8 
2.6 CASOS PRACTICOS Y EJERCICIOS ........ . .. .... .. ... . ...... ... .. .. .. ... . ... . .. ... ....... .. .. . . . . .. . . . ... 2.10 
CAPITULO 3.- DETERMINACION DE LA PRODUCCION Y COSTE 
3.1 DEFINICION DE LA PRODUCCION ....... .... ... .... .. .. . .. ...... .. ..... ... .. .. .. ..... ..... ... .. ... . ..... . . 3.1 
3.1.1 CONCEPTO . . . . . . . .. .. . .. . . . . .. .. . . .. .. .. . .. .. . . .. . . .. .. .. .. .. . .. .. . . .. . . . .. . . . . . . . . . . . .. . .. . . . . . . . . . . . . . . 3.1 
3.1.2 FACTORES . . .. . . .. .. ... . .. . . . .. . . .. . .. . . . .. . . . . . . . . . . . . . . .. . . . . . . .. . .. . . . . . .. .. . . . . . . .. . . . . . . . . . . . . . . . . . . . 3.1 
3.2 EFICIENCIA HORARIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 
3.3 CICLO DE TRABAJO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5 
3.3.1 CONCEPTO . . . .. . . .. . .. . . . . . . . . . . . . . .. . . . . . . .. . . .. . .. . . . . .. . . . . . . .. .. . . . . . .. . . .. .. . . . . .. . . . . . . . . . . . . . . . . . . 3.5 
3.3.2 FORMULA DE LA PRODUCCION .. .. .. . .. .. .. . .. .. .. .. .. . .. .. . .. . .. . .. .. .. . . .. .. .. ... .. .. .. . .. .. . 3.6 
3.4 CALCULO DEL COSTE DE LA UNIDAD DE OBRA .. .. .. .. . .. .. .. . .. . .. . . .. .. .. . .. .. .. .. .. . . .. . .. . .. . .. 3.7 
3.5 CONTROL DE COSTES .. . .. .. . .. .. .. .. . .. .. . .. .. .. .. .. . .. .. . .. .. .. .. . .. .. .. . .. . . .. . . .. . .. .. .. . .. .. .. .. .. .. .. .. 3.8 
3.6 CASOS PRACTICOS Y EJERCICIOS 
/ 
3.9 
C.P. 3.1 PRODUCCIONES EN AUTOVIAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.9 
C.P. 3.2 CONSERVACION DE LA MAQUINARIA ... .......... .. ..... . .. . .. .. . . ............ . . .. .. ....... 3.10 
C.P. 3.3 LA CONJUNCION DE ACTIVIDADES SIMULTANEAS DIFERENTES . . . . . . . . . . . . . . . . 3.11 
CAPITULO 4.- CLASIFICACION Y TIPOS DE MAQUINAS DE 
MOVIMIENTO DE TIERRAS Y EXCAVACION 
4.1 SIGNIFICADO DEL MOVIMIENTO DE TIERRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1 
4.2 CONSTITUCION DE SUELOS. TIPOS DE EXCAVACION ..... ......... . ........ .. .... .. . .... . .. . ... . 
4.3 TIPOS DE EXCAVACIONES ... . .... .. . ..... . ........ ... .. . .... . ... .. . ....... ...... . . .. . .. ........ .. ........ .. . 
4.3.1 EXCAVACION A CIELO ABIERTO .. .... .... ..... . .......... ..... ... .. . ....... ... .......... .. ..... . 
4.3.2 EXCAVACIONES SUBTERRANEAS . ......... . ..... . ... .. . .. .. ... .. .. .. . .. ... . . . ................. . 
4.3.3 EXCAVACIONES SUBACUATICAS ................... . ..... .. ...... . .. ... . ...... .. .... . .......... . 
4.2 
4.3 
4.3 
4.4 
4.4 
4.4 CLASIFICACION Y TIPOS DE MAQUINARIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5 
4.4.1 MAQUINAS QUE EXCAVAN Y TRASLADAN LA CARGA ... .... . .......................... . 4.5 
4.4.2 MAQUINAS QUE EXCAVAN SITUADAS FIJAS SIN DESPLAZARSE ... .. . ........ ... . . 4.5 
4.4.3 MAQUINAS ESPECIALES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6 
4.5 CLASIFICACION DE ATKINSON DE UTILIZACION DE MAQUINARIA . . . . .. . . . . . . . . . . . . . . . . . . 4.6 
4.6 CLASIFICACION ATENDIENDO A LA EXCAVABILIDAD .. ......... .. . . ... ... . .... ... ... ..... ... .. . . 4.7 
4.6.1 INDICES DE EXCAV ABILIDAD, IE, DE SCOBLE, Y MUFTUOGLU . . . . . . . . . . . . . . . . . . . . . . 4.7 
4.6.2 CLASIFICACION DE FRANKLIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.8 
4.7 VENTAJAS Y LIMITACIONES DE LAS DISTINTAS MAQUINAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.10 
4.8 ELECCION DE LA MAQUINARIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.12 
4.9 MECANIZACION DE UNA OBRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.13 
4.10 NEUMATICOS EN LAS MAQUINAS DE MOVIMIENTO DE TIERRAS ... . . ... . ............. .. .. . 4.13 
4.10.1 CAPACIDAD Y RENDIMIENTO .... .... .. . ............ .. . ...... ...... .. . ... . ....... . . . ... .... . .. ... 4.14 
4.10.2 DURACION Y FACTORES . . . . . . . .. . . . . . . . .. . . ... ... .. .. .... .. . .. . . . .. . .. . .. .. . . . .. . ... .. ... . . ... . ... 4.14 
4.10.3 DIBUJO ... ... .......... . ... .. ...... .. .. .... . . . . ... .. ...... . ... .. . ...... . ... . .. . .. . .. ... ........... ... . .. . . 4.16 
4.10.4 DENOMINACION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . .. . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 4.16 
4.10.5 CONCEPTO T.V.H. ... ... .. ..... ... ... . . ... . ....... .. .... ....... . .. ... . .... ... .... .... . ......... . ... .. .. 4.17 
4.11 CASOS PRACTICOS Y EJERCICIOS . . . . . . . .. . .. . . . . .. . . . . . . . . . .. . . . . . .. . . . . . . .. . . .. . .. . . .. .. . . .. . . .. . . . . . . 4.17 
CAPITULO 5.- EXCAVACION Y EMPUJE. EL BULLDOZER 
5.1 TRACTORES, MODELOS Y CAMPO DE APLICACION . . . . . . .. . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 5.1 
5.1.1 EN CUANTO AL TIPO DE TERRENO .... . .... . ... .. .............. ...... .. .... .. ...... ......... .. . 5.2 
5.1.2 COMO ELEMENTO DE TIRO O DE EMPUJE . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2 
5.1.3 RESPECTO AL EQUIPO DE TRABAJO ........ . ... . ............... . ........ . ........ . ............ 5.2 
5.2 EQUIPOS DE TRABAJO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3 
2 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
l 
l 
l 
u 
u 
5.2.1 HOJA DE EMPUJE . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . 5.3 
5.2.2 ESCARIFICADOR (RIPPER) . . .. . . . . . . . . . . . . . . . .. . . . . . . . . . . . .. .. . . . . . . . . .. . . . .. . . . . .. . .. . . . . . . . . . . . 5.6 
5.3 CICLO DE TRABAJO COMO EMPUJADOR .. .. . .. . . .. .. .. .. . .. .. . .. .. . .. .. .. .. . .. .. .. .. . .. . .. . . .. .. . .. . 5.8 
5.4 CAPACIDAD DE LA HOJA DE EMPUJE .. . .. . . .. . . . . . . .. . .. . .. .. . . . . . . . . .. .. .. . . . . . . . . . . . . .. . . . . .. . . . . . . . . 5.8 
5.5 DISTANCIAS DE EXCAVACION Y DE EMPUJE.. . .. .............. . ................ .. ............... ... .. 5.11 
5.6 PRODUCCION DEL BULLDOZER . .. .. . .. .. .. .. . .. .. . .. .. .. .. .. .. . .. .. .. .. .. . .. .. . .. .. . .. .. .. .. . .. . . .. . .. . 5.13 
5.6.1 MEDIANTE GRAFICAS DE PRODUCCIONES MAXIMAS TEORICAS .. ... .. . ... . .. .. .. 5.13 
5.6.2 MEDIANTE LA DURACION DEL CICLO Y SU PRODUCCION .. .. .. .. .. . .. . .. .. .. . .. ... . 5.16 
5.7 TECNICAS DE EXCAVACION Y EMPUJE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.16 
5.8 ESCARIFICABILIDAD DE UN TERRENO .. .. .. . .. .. .. .. . . .. .. . . .. . .. .. . .. .. .. .. . . . .. .. .. . .. ... .. .. . . . .. .. 5.19 
5.9 DESGARRAMIENTO ECONOMICO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.21 
5.10 PRODUCCION DE ESCARIFICACION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.24 
5.11 TRABAJO COMBINADO DE ESCARIFICACION Y EMPUJE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.25 
5.12 UTILIZACION EN COMPARACION CON LA EXCAVADORA HIDRAULICA ... .... .......... . 5.26 
5.13 UTILIZACION EN COMPARACION CON LA MOTONIVELADORA .. .. .. .. .. .. .. .. .. .. .. . .. . .. . .. 5.27 
5.14 CASOS PRACTICOS Y EJERCICIOS .. .. . .. .. . .. .. .. .. .. . .... .. . .. .. . .. .. . .. .. .. . .. .. . .. .. .. . .. . .. .. .. . .. .. . 5.27 
APENDICE 5.1 TECNICAS DE ESCARIFICACION . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.31 
APENDICE 5.2 TRAFICABILIDAD . .. . .. .. . .. . .. .. .. . .. . .. . .. .. .. . .. .. . .. .. . .. .. ... .. . .. .. . . .. .. . .. .. .. .. .. .. . . . . 5.33 
CAPITULO 6.- EQUIPOS DE EXCAVACION Y CARGA. PALA CARGADORA 
6.1 OBJETO Y DEFINICION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1 
6.2 CARGADORAS DE RUEDAS ......... ...... ........... .... .. ..... .............. ........... .. .. ..... .......... 6.1 
6.3 CARGADORAS DE CADENAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2 
6.4 ESCARIFICADOR DE LAS CARGADORAS DE CADENAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3 
6.5 PARAMETROS CARACTERISTICOS GEOMETRICOS ... ... .. ... . . ........ .......................... 6.4 
6.5.1 ALTURA DE DESCARGA . . ....... ......... ... .. .... . .......... . . .. ................... . .............. . 6.4 
6.5.2 ALCANCE . . . . . . .. . . . . . .. . .. . .. . . .. . . . .. . . .. . .. . . .. . . . . . . .. . . .. .. . . .. . . .. . .. . . .. . . . . . .. .. . .. .. . . . . .. . .. . . . . 6.4 
6.6 PARAMETROS CARACTERISTICOS DINAMICOS .......... ....... .... .. . ................ ... ........ 6.5 
6.6.1 CARGA DE VUELCO .. .. . .. . .. .. .. .. . .. . .. .. . .. .. . . .. . .. .. .. . .. .. .. .. . .. ... .. .. .. .. .. .. .. .. .. . .. .. .. .. . 6.5 
6.6.2 CARGA MAXIMA OPERACIONAL .. .. . .. . .. . .. . .. . .. .. .. .. .. .. . .. .. .. .. . .. .. . .. .. .. .. .. .. .. . .. .. . 6.5 
6.6.3 CAPACIDAD DE ELEVACION DEL SISTEMA HIDRAULICO ............. .. .. .. . .. . . . . . .. 6.5 
6.6.4 FUERZA DEARRANQUE . . . . .. . . . .. . . . . . . . . . . . . .. . . . . . .. . .. . . .. .. . . . . .. . . .. . . ... . . .. . . . . . . . . . . . . . . . . . 6.6 
6.7 CICLO DE TRABAJO .. . .. . .. . .. .. . .. . .. . .. .. . .. .. . .. .. .. . .. . .. . . . .. .. .. . .. . .. .. .. .. .. .. .. . .. .. . .. .. .. . . .. . .. .. . 6.8 
6.8 FORMA DE CARGA .. .. . . . .. . . .. . . .. . . . . .. . . . . . . .. .. . . .. . .. . .. . . .. . . . . .. . .. . . .. . . .. . .. . . . .. .. . .. . . . . . . . . . .. . . . . . 6.9 
6,9 PRODUCCION ....... . .......... ... ... . ...... . ... .. .. ............. .. . ...... . .......... .. ........ .... ............. 6.10 
6.10 CAMPO DE APLICACIONES .. . .. .. .. .. . .. . ...... .. .. .. .. .... . ..... .. . .. .. . .. .. .. . .... . .. .. .. . .. .... .. . .. .. .. . 6.14 
6.10.1 CARGADORAS DE RUEDAS .. . .. .. .. . .. . . .. . . .. . .. .. .. .. .. . .. .. .. .. .. .. .. .. .. .. .. . .. .. . .. .. . .. . .. .. 6.14 
3 
( 
( 
( 
( 
( 
6.10.2 CARGADORAS DE CADENAS ......... ... ........ .... .. ... .. ...... . .... . ..... ...... ........ .. .. . . . 6.15 ( 
6.10.3 COMPARACION DE CARGADORAS ....................... . ...................... . ............. . 6.15 ( 
6.11 COMPARACION ENTRE CARGA CON CARGADORA Y EXCAVADORA HIDRAULICA ... . 6.17 ( 
6.12 UTILIZACION DE LA CARGADORA EN ARRANQUE ......................... .. ......... .. .. . ...... . 6.18 
( 
6.13 RETROCARGADORAS ........... .. ............ . ...................................... ................. . ..... . 6.18 
( 
6.14 MINI CARGADORAS ............ . .................................... . ...... . . ........................ . ........ . 6.20 { 
6.15 CARGADORAS DE TUNEL DE BAJO PERFIL TIPO L.H.D. . ... ... ....................... .... ...... . 6.21 ( 
6.16 CASOS PRACTICOS Y EJERCICIOS ...... . ......... . ............... . ....... . ......... .. .. ....... .. . .... .. . . 6.22 
C.P. 6.1 UTILIZACION DE LA CARGADORA DE CADENAS CON ESCARIFICADOR EN 
( 
( 
ARRANQUE .... .. .... .. . .................. ..... ....... .......... ................. .... ... .. .......... . 6.22 
' C.P. 6.2 CORTE TIPICO DE UN VACIADO EN MADRID Y EXCAVACION CON ( 
CARGADORA ..................... . ....... ....... . ....... .... . .... ........ ..................... .... . . 6.23 ( 
C.P. 6.3 DATOS PRACTICOS DE PRODUCCION EN OBRA ... ... .......................... .... .. 6.24 ( 
C.P. 6.4 COMPARACION ENTRE RETRO Y CARGADORA EN EXCAVACION ....... ... ... . 
( 
6.24 
APENDICE 6.1 INDICADOR DE PESAJE DINAMICO EN CARGADORAS ................... .... ...... . 6.25 
APENDICE 6.2 LA ELECTRO NI CA EN LAS CARGADORAS ...... ... .. . . ........ ..... .. .. .... . . . ......... . 6.26 
.CAPITULO 7.- EQUIPOS DE CARGA Y ACARREO. MOTOTRAILLAS 
7.1 OBJETO ... ....... . ... . ... .. . ....... ... .. . ... . .. ................ ... . .. . .. .. . .... ....... . ...... ....... ... . . ....... .. . 7.1 ( 
7.2 TIPOS DE TRAILLAS .................. ....................... ...... . .... . .... ... . ................ ........ .. .. . . 7.1 
7.3 PARTES ESTRUCTURALES ...................... . . ....... ........ ..... . ..... ....... ..... ........ . .. ........ . . 7.2 
7.3.1 ELEMENTO TRACTOR Y TRANSMISIONES . ..... .............. ... .. .... . .................. .. 7.2 
7.3.2 CAJA 7.3 
7.3.3 SUSPENSION ........ . ...... ... .... . . ... .. . .. ... ... ....... . .. . .... ... .. ............. .. ........ . ......... . 7.4 
7.4 CICLO DE TRABAJO DE LAS TRAILLAS ... . .. . . ............ . ... . ............... . ... ........ .... . . ..... . . 7.4 
7.4.1 CARGA ................ . .. .... . .. .. ... . ......... . ......................... ............... . .. . ............. . 7.5 
7.4.2 ACARREO ........ ... ............ . ... ... .. ..... ........ ......... .. . ... ... . ... . ......................... . . . 7.6 
7.4.3 DESCARGA ..... .. ...... .. . . ..... . .. ..... ... .. . ..... .. ... .. .... . .. . .... .... .. ..... ... .... . .... .......... . 7.6 
7.5 METODOS DE EXCAVACION .. . .............................. .. ... .. . ... . ..... . ....... . .. ... . .. . .. . ... . . .. . 7.7 
7.6 FORMACION DE TALUDES Y ZANJAS .......................... .... ... . .. .. . .. .... . ... . .. . . ............ . 7.7 
7.7 TECNICAS DE EMPUJE DEL TRACTOR EMPUJADOR . ... . ........ . . .............. .............. . . 7.8 
7.8 CICLO DE TRABAJO DEL EMPUJADOR ..... . .... .. .... ....... . ... . .. . ....... ........ . ... ....... . ... . . .. 7.9 
7.9 MOTOTRAILLA CON ELEVADOR DE PALETAS ......... .. ......... . ....... .. . .. ... .... . ........ .. .. . 7.10 
7.9.1 CARGA ...... . ......... ... ...... ...... .................. . ..... . ......... ... . .............. .... .. . ..... . ... . 7.11 
7.9.2 DESCARGA 7.12 
7.10 MOTOTRAILLAS DE DOS MOTORES (EMPUJE-ARRASTRE) ....................... ...... ..... .. 7.13 
7.11 UTILIZACION Y COMPARACION DE MODELOS DE MOTOTRAILLAS ........ . .. ... ...... . .. . 7.14 
7.12 PRODUCCION 7.17 
4 
7.13 ESTUDIO DEL CICLO DE TRABAJO DE UNA MOTOTRAILLA CONVENCIONAL 
CON TRACTOR EMPUJADOR Y NUMERO OPTIMO DE MOTOTRAILLAS.................... . 7.18 
7.14 CURVA DE INCREMENTO DE CARGA ...... ........... . .............. .... . ......... .... ........... ... .... 7.19 
7.15 APLICACIONES 
7.16 VENTAJAS 
7.20 
7.20 
7.17 CASOS PRACTICOS Y EJERCICIOS . . .. . . . .. . . . . . . . . . . . ... . . .. . . ... . . ...... . . ........ . .. . . . . . . . . . . . . . . . . . . . 7.22 
APENDICE 7.1 TRAFICABILIDAD . . . . . . . . .. . .. . . . . . . . . . . . .. . .. . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . ... . . . . . .. . . . . . . 7.35 
APENDICE 7.2 SOLUCION ANALITICO-GRAFICA DEL COSTE MINIMO...... ... .. .. ..... .. ..... ... .. 7.36 
CAPITULO 8.- EQUIPOS DE EXCAVACION EN POSICION FIJA. 
EXCAVADORAS IDDRAULICAS 
81 OBJETO Y DEFINICION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.1 
8.2 TIPOS ... .... ... ... .... . ... ...... . .. ..... .. ....... . . ... .. ........ ...... ... . .. . ..... ... . . ... .. . .... .... . .. ... . .. . ...... 8.1 
8.3 EQUIPO DE TRABAJO ..... . .. .. .. ........... . .... ....... . .... . ... ..... .. . . ... .... . . . ... . ... .. ..... . ... ... . . .. 8.4 
8.3.1 EQUIPO DE EMPUJE FRONTAL. .. .. ............ .. .. . ....... .. . ....... .. .. ............ .. . .. .. . .... . 8.6 
8.3.2 EQUIPO RETRO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.6 
8.3.3 EQUIPO DE BRAZO TELESCOPICO . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.6 
8.3.4 EQUIPO BIVALVA ........... . ... . . .... . .. ........... .. ......... . .......... ...... .. .. .. .. . ... . .. .... . . 8.7 
8.3.5 EQUIPO DE MANDIBULAS HIDRAULICAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.8 
8.3.6 OTROS EQUIPOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.9 
8.4 MARTILLOS ROMPEDORES HIDRAULICOS (M.R.H.) . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.9 
8.5 CAPACIDADES DEL CAZO . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.12 
8.6 FUERZA DE EXCAVACION ...... .. ... .. ..... .. ... .. ..... ............. .. ... . ............. .. .. . .... ....... .. ... 8.12 
8.7 FUERZA DE EXCAVACION Y PESO DE LA EXCAVADORA . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.15 
8.8 METO DOS DE EXCA VACION Y CARGA . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.15 
8.9 CICLOS DE TRABAJO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.18 
8.10 PRODUCCION . . . . . . . . . . . . . . . . . . . .. . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . .. . . . . . . . . 8.19 
8.10.1 FACTORES . . . . . . . . . . . ... . . .. . . ... .. . ... .. ... . . . . . . . . . . .. . . . . . .. . .. . . ..... .. . .. .. . . .. . . . . . . . .. . . .. . . . . . . .. 8.19 
8.10.2 PRODUCCION HORARIA ..... .. ....... .... . ... .. .. .. .. . . .. ... . ...... .. . . ...... . ............. ....... 8.21 
8.10.3 INFLUENCIA DE LOS DESPLAZAMIENTOS . . . . . . .. . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.23 
8.11 SISTEMA HIDRAULICO Y LA ELECRONICA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.25 
8.12 MINIEXCAVADORAS ...... . .. ... .. . ...... . ........ ............... . ..... ... . . . ..... . .. ... ... .. ... ... . .. .. . ..... 8.27 
8.13 CASOS PRACTICOS Y EJERCICIOS . . . . . . . . . . . . . . .. . . . .. . . . .. .. .. . . . .. . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.29 
APENDICE 8.1 NUEVA GENERACION DE M.R.H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.34 
APENDICE 8.2 PLUMA DE DOS PIEZAS. VENTAJAS E INCONVENIENTES . . . . . . . . . . . . . . . . . . . . . . . . . . 8.35 
APENDICE 8.3 VARIABLES DE COMPARACION DE EXCAVADORAS. RANGO DE MODELOS 8.36 
APENDICE 8.4 EXCAVACION DE TUNE LES. MAQUINARIA . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.38 
APENDICE 8.5 EJEMPLO DE EXCAVACION DE UN DESMONTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.41 
5 
CAPITULO 9.- EXCAVADORAS DE CABLES 
9.1 TIPOS ... . .. ........ . .. . . .. .. . .. .. ..... .. .. . . ...... . .... ....... .. ......................................... . ...... .. .. . 
9.2 TIPOS MOVILES . .... .. .. . .. .. ... ...... .. .. . . ... .. . . .. . .. . ... .............. .. . ... .. ... .......................... . 
9.3 DRAGALINA ...... . ..... . .... .. ... . .. .. .. . .. .. . .. .... . .. . .. . .. . .. .. .... ........ . .. ..... .. ... ..... .. . ..... .. . .. . .. . 
9.1 
9.1 
9.3 
9.3.1 EQUIPO DE TRABAJO . .. . . . .. . . . .. . .. . .. . . . .. . .. . . . . . .. . . . .. . . . . . .. . . . . . . . . . . . . . . .. . . . . . .. . . .. . . . . 9.4 
9.3.2 CICLO DE TRABAJO . . .. . . . . . . . . .. . . . . . . . . . . . . . .. . . . . .. . . .. . . .. . . . . . .. . .. . .. . .. . . .. . .. . .. . . .. . .. . .. . . 9.5 
9.3.3 UTILIZACION . . . . . . . . . . . . . .. . . . .. . . . . . . . . . . .. .. . . . .. . . . . . . . .. .. .. . .. . . .. .. . ... . .. . .. . . .. .. . . .. . . . . . . . . . . 9.7 
9.3.4 PRODUCCION .. . .. .. ...... . ........................ .. .. . ....... . ... .. .. ....... .................. ... .. . . 9.8 
9.4 CUCHARA BIVALVA ...... . . .. . . ....... .. .. .. . ...... . ... .... .. ... .. .. . ...... . .. ...................... . .. . . ...... 9.9 
9.5 GRUA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 9.10 
9.6 EXCAVADORAS ESTACIONARIAS (SCRAPERS) ..... ... . .. . .. . ............ . .. .. ... .. ...... . .......... . 9.11 
9.7 SCRAPER DE ARRASTRE MONOCABLE . . . .. . .. .. . . . . . . .. . . . . . . . .. .. . . .. . . .. . . . . .. . . . .. . . . . . . . . . .. . . . . . . 9.11 
9.7.1 PARTES ESTRUCTURALES . . . . . . . . . . . . . . . . . . ... . . . . . .. . . .. .. ... ... ... ..... ... . . .. . . . . . . ... . . . . . .. . . 9.11 
9.7.2 EQUIPO DE TRABAJO .. .. . .. .. . .. . . . .. . . . . . . .. . ... .. . . .. .. . . .... . . ... . ...... .... . . ... . . .. . .. . ... . .. . 9.11 
9.7.3 CICLO DE TRABAJO .. . . . . .. .. . . . . . ... .. . . . .. .. . .. . . .. . .. . .. . ... . .. . .. .. . .. . .. ... . .. . .. .. . .. ... .. .. . .. 9.13 
9.7.4 FORMA DE TRABAJO .. .. .... .... . .. .. .......... .. ............ . .......... . .. .. ............ .. .. . ...... 9.13 
9.7.5 PRODUCCION . . . . . . . . . . .. . . . . . . . . . . . .. .... . . . . . . . ... . . . ... .. . . . . .. .. ... . . . . . . . . .. .. . . .... . . . .. . . .. ... .. 9.14 
9.8 SCRAPER DE TRANSPORTE AEREO . .. ... . . ... . .. .. ...... . ... . .. .. ..... . ... . ... .. . . .. . ... .. . .. ... .... .. .. . 9.15 
9.8.1 PARTES ESTRUCTURALES . . .. .. .. . . .. .. . .. . . . . .. . . . . . . . . . . . . . . . ... . . .. . . . . . . . . . . . . .. . . . .. . . . . . . . .. 9.16 
9.8.2 EQUIPO DE TRABAJO .. ...... . ... . .. .... . .. . ........ .. ... ........ ........... .. .. .... .. .. .... ... .. .. . 9.16 
9.8.3 FORMA DE TRABAJO . . . . . . . . . . . .. .. .. .. .. .. . .. . . .. .. .. . .. .. .. . .. .. .. .. .. .. .. .. .. . .. .. .. .. .. .. .. .. . . . 9.17 
9.9 CASO PRACTICO DE DRAGALINAS . .. .... . .. .. .... .. .... .. . .... .. .. .. .. .. ..... . .. .. .. ..... . .... ...... .. . . . 9.18 
CAPITULO 10.- ZANJAS. EQUIPOS DE EXCAVACION DE CARGA 
CONTINUA. ZANJADORAS. ENTIBACION DE ZANJAS 
10.1 ZANJADO RAS. OBJETO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.1 
10.2 PROBLEMÁTICA DE LAS ZANJAS EN RELACIÓN CON LA MAQUINARIA 
Y PROCESO CONSTRUCTIVO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.2 
10.3 TIPOS DE ZANJADO RAS .. . . . . . . . . . . . .. . . .. . .. . . .. . .. . . . . . . .. . . .. . . . . . . . . .. . . . . . .. . . . . . . . .. . . . . .. . . . .. . . . . .. . . 10.4 
10.4 ZANJADO RAS DE BRAZO INCLINABLE . . . . . .. . . . .. . . . . . . . . .. . . . . . .. . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.5 
10.5 CORTADORAS DE DISCO CON PICAS . . . . . . .. . . . . . . . . . . . . . . . . . . . . .. .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . .. . . . . 10.6 
10.6 ZANJADO RAS DE RUEDA . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . .. .. . . . . . . .. . . . . . . .. . . . . .. . .. . .. . . . . . . . . . . . . . . . . . . . . 10.7 
10.7 COMPARACIÓN ENTRE ZANJADORAS Y RETRO .. .. ..... ...... . .. ... . . .... ... ... .. .. ..... .. .. . .. . ... 10.8 
10.8 ENTIBACIÓN DE ZANJAS EN TIERRA . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . .. . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 10.9 
10.9 PROCESO MECANIZADO DE ENTIBACIONES . .......... .. .... . .......... . .. .. ............ ... . .. ..... . . 10.10 
10.9.1 TERRENOS ESTABLES . . . . . . . . . . . . . . . .. . . .. . . . . . . . . . . . . . . . . . . . .. .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 10.10 
10.9.2 TERRENOS INESTABLES . . .. . . . ... .. .. .. . . . .. . .. . . . . . .. . .. . . .. . ... . . . . . . . . . .. . ... . . .. . . . . . .. .. . ... . . 10.10 
10.9.3 ANCHO DE BLINDAJES . . .. .. . . .. . .. . .. . .. .. . . . . .. . .. . . . .. .. . .. . . .. . . .. . . . . . . . . .. . .. . . . . . . .. . . . . . . .. 10.11 
6 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
10.10 SISTEMA DE BLINDAJES POR PANELES .. . ..................... ... ......... . .... . ... ... . .. .. ... . . .. . .. . 10.12 
10.11 SISTEMA DE PANELES CONTABLESTACAS LIGERAS .......... . ........ .. . .. ..... .... ............. . 10.12 
10.12COMPACTACION DE ZANJAS .. . . . . .. .. . .. .. . .. .. . .. . . .. .. .. ... .. .. .... .. .. .. .... ...... ... .. ..... .. . . ... . .. 10.14 
10.13 COLOCACION DE TUBERIAS Y CONDUCCIONES SIN ZANJAS ..... . ... . .. .. . ..... .. . .... . . . .. 10.15 
10.13.1 PERFORACION DIRIGIDA DESDE SUPERFICIE ... .. .. .. .. .. . . .. . .. . . .. .. .. . .. .. ... . .. .. .. 10.15 
10.13.2 PERFORACION MEDIANTE HELICE CONTINUA DESDE FOSO ................... . .. 10.17 
10.13.3 PERFORACION CON MARTILLO DE FONDO (TOPO) ........ ... .. . . ......... . ........ .. 10.17 
10.13.4 MICROTUNELADORA .. .. .. ... .. .. .. . .. . . . .. .. .. .... ..... ... . . . . . . . . . . . . .. .. . ... . . . . . .. . .. .. . . . . . . . 10.18 
10.14 CASOS PRÁCTICOS .. .. ... ...... . ... .......... ... ....... ... .... ..... ... .... .... ....... ....... . .. . .... . .. ..... .. 10.15 
CAPITULO 11.- ACARREO. CAMIONES Y DUMPERES 
11.1 MEDIOS DE ACARREO .. .. . .. . . . . . . . . . . . . . . . . . ... .. .. .. . . .. . . . .. .. . .. . . . . . . . . . . ... .. . .. . . . . . . . . . . . . . . . . . . . . .. . . 11.1 
11.2 CAMIONES BASCULANTES .................... .. .............. . .... ...................................... .... 11.1 
11.3 SEMIREMOLQUES BASCULANTES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 
11.4 CAMIONES DUMPER ............................... ... ... . .. .... .. . .. .. .......... . ..... . . .. .... .. ..... . ... .... .. 11.3 
11.5 DUMPERES EXTRA VIALES .. . . . .. . .. .. .. .. . .. .. . .. . .. .. .. . .. .. . . . . . . . . . .. . . . . .. . . . .. . . . . . . . .. . .. . . . . . . . .. .. .. 11.4 
11.5.1 CARACTERISTICAS FUNDAMENTALES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.4 
11.5.2 DUMPERES ARTICULADOS. COMPARACION CON RIGIDOS . .. .. . . .. . .. . . . .. . . . .. .. . . 11.7 
11.5.3 RAZONES DE UTILIZACION .. .. .. .. . .. . .. . .. .. .. .. .. . . . .. . .. . . . . . . . .. . . . .. .. . . .. . . . . . .. .. .. .. .. . .. . 11.9 
11.5.4 CRITERIOS DE SELECCION DE DUMPER O CAMION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.9 
11.6 CICLO DE TRABAJO DE LA UNIDAD DE ACARREO .. .. . . . .. .. .. .. .. .. . . . .. . . .. . . .. .. .. .. .. .. .. . . .. . 11.9 
11.6.1 TIEMPOS FIJOS . .. .. . .. . .. .. .. . . . . . . . . . . . . . . . .. ... . . . .. .. .. .. . ... .. . . .. .. .. .. . .. .. .. .. . . . . . . . . . . . . . . . . . 11.10 
11.6.2 TIEMPO VARIABLE ... .... ....... .. . ...... ... ..... ......... . .... ..... . . .. .. .. ....... .. .. ........... . 11.11 
11.7 RELACION ENTRE EQUIPOS DE ACARREO Y CARGA ....... . .. .. .... ... ... .... ..... ... . ........ . .. 11.12 
11.8 PRODUCCION DE LA UNIDAD DE ACARREO . . .. .. . . .. ... . . . . .. .. . . . . .. . ... .. . .. . . .. . . . .. .. . . . . . .. .. .. 11.14 
11.9 FACTOR DE ACOPLAMIENTO, MF ... ....... .. ...... . .... .. ....... . ................. .... ...... ... . ... ....... 11.14 
11.10 CALCULO DEL Nº DE VEHICULOS NECESARIOS . . . . . . . . . . . . .. .. .. .. .. .. . . .. .. .. . . . .. . .. . . . . . .. . . . .. . 11.15 
11.11 PISTAS DE OBRA Y SU MANTENIMIENTO . . . . .. . . .. . . . . .. . . . . . . . .. . .. . .. .. .. .. .. . .. . .. .. .. . .. .. .. .. . . . 11.16 
11.12 MOTOVOLQUETES DE OBRA ..................... ... ......... .. . . .. ............ . . .. .. .. .. . . . . .. .. . ....... .. 11.17 
11.13 COMPARACION ENTRE LOS DISTINTOS SISTEMAS DE ACARREO ..... . .. ........ . ... ... . ... 11.18 
11.14 TRANSPORTE DE MAQUINAS PESADAS ... . ........... .. . .. ............. ............ ..... . ............. 11.19 
11.15 CASOS PRACTICOS Y EJERCICIOS . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.20 
APENDICE 11.1 TRAFICABILIDAD DE LAS PISTAS . . .. . .. .. .... .. .. .. .. .... ... . .. .. .. .. .. .. . .. . . . .. .. . . .. . 11.22 
CAPITULO 12.- NIVELACION. LA MOTONIVELADORA 
12.1 FUNCIONES Y APLICACIONES . . . . . . . . . . . . . .. .. . .. . . .. .. .. .. .. . . . .. .. .. .. .. .. . . .. . .. .. . .. .. . . . . . . . .. . .. . .. . . 12.1 
12.2 PARTES ESTRUCTURALES . ...... . ....... . ...... ... ..... ... .. .............. .. . .. ... .. ..... . ... .. .. .. .......... 12.2 
12.3 MOTOR Y TRANSMISIONES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.4 
7 
( 
( 
( 
(' 
( 
12.4 BASTIDOR.MAQUINAS ARTICULADAS ....... . . ........ .. . . ............. . ................. .. ...... .. . .. . 12.4 ( 
12.5 RUEDAS TRASERAS ...... .. ... ... ............ . ... . ...... . ... .... ... .. .............. ... . .. .. . .................. . . 12.5 ( 
12.6 RUEDAS DELANTERAS .................... ... .............. ............ ........ . ... . ... ... ................. .. 12.5 ( 
12.7 EQUIPO DE TRABAJO ...... . ............................... .. ..... ... .. .. .... ...... .. ...... .. ............. . ... . 12.7 
( 
( 
12.7.1 BARRA DE TIRO ....... ...................... ..... .............. ......... . .. .. . . ...... ..... .. ... ....... . 12.7 
12.7.2 CIRCULO DE CORONA .................... .. . .. ...... ............ .. .. ...... ....... ................. . . 12.7 ( 
12.7.3 HOJA VERTEDERA Y MOVIMIENTOS ............ .. .... .. ........ .. ...... .. .. . .. ........ ...... .. 12.8 ( 
12.7.4 CONTROL DE MOVIMIENTOS DE LA HOJA ................................................ .. 12.10 
12.7.5 OPCIONALES ............................ .. .......... ... ......... ...... .. . .... .... .. ....... .. . ... .. ..... . 12.11 
12.8 SISTEMA DE TRABAJO .. .. . ..... ..... .. .... ...... .... .... .... ... . .. .. .. ........ ... . . ... .. . . ...... . ........ . .. . 12.12 
12.9 PRODUCCION .............. ... . ............ .... .. . ... .. .... . . .. .. . ........... ..... .. . ... . .. .. .... ............. .. . . 12.13 
CAPITULO 13.- EXTENDIDO Y COMPACTACION ( 
13.1 EL PROCESO DE EXTENDIDO Y COMPACTACION .. .. .. .. .. .. .. .. .. ... .. . . .. . .. .. .. .. .. .. . . .. . .. . . . 13.1 
13.2 DENSIDADES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.3 
13.3 ENERGIA DE COMPACTACION .... . ..... ...... ... ... . .. . ... ............ .. ... . . . . ... .. ..... ........ .. ...... 13.6 
13.4 LA COMPACTACION SEGUN LA ESTRUCTURA FISICA Y PARAMETROS DE LOS SUELOS 13.9 
13.4.1 SUELOS PERMEABLES . . . . . .. . . . .. . .. . . .. . . .. . . .. . .. . . . . . . .. . ... . .. . .. . . .. .. . . . . ... . . . . . ... . . . . . . . . 13.11 
13.4.2 SUELOS IMPERMEABLES ...... ... . ...... . ................. . ............ .... . .. .. .... ... . ....... .. . 13.11 
13.5 TERRAPLENES 13.12 
13.6 FINOS . . . . . . . . . .. . . . . . . . . . . . .. . . . . .. . . . . . . . . . .. . . .. . . .. . .. . . . .. . . . .. . . .. . . . . . . . .. .. .. . . . .. . . . . . . . . . . . . . . . .. . . . . . . . . 13.13 
13.6.1 IDENTIFICACION DE FINOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.14 
13.6.2 ANALISIS DE LA PARTE FINA DE UN MATERIAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 13.15 
13.6.3 SUELOS PLASTICOS .. ....................... .................................... ..... ........ ... .. .. 13.16 
13.6.4 COLAPSO DE TERRAPLENES DE SUELOS COHESIVOS....................... .... ........ 13.17 
13.7 COMPACTADORES DE SUELOS PLASTICOS .......................................................... 13.18 
13.7.1 COMPACTADORES DE ALTA VELOCIDAD, PATA DE CABRA .. .. .. .. ... .. . .. . .. .. .. .. 13.18 l 
13.7.2 COMPACTADORESVIBRATORIOS PATA DE CABRA .. . .. . .. .. .. .. .. .. .. .. .. .. .. .. . .. .. .. 13.19 
13.7.3 COMPACTADORES VIBRATORIOS LISOS .. .. ... .. .. . .. .. .. ... .. .. .. .. .. .... .... .. . .. .. .. .. . 13.20 
13.8 COMPACTADORES DE SUELOS GRANULARES .. .. .. .. . .. .. .. .. . .. . .. .. .. . .. . .. . .. .. .. .. .. .. . .. .. .. 13.23 
l 
13.9 PEDRAPLENES ....... .... . .. .... ..... .. .. .... ... .. .... ..... .. . .. . ...... . ....... ........ .. . . .. .. . .... ............ 13.23 
13.10 MATERIAL TODO UNO .. . .. . .. . .. .. .. . .. .. .. .. .. .. .. .. .. . .. .. .. .. .. .. .. .. .. .. ... .. .. .. .. . . .. . .. . ... .. .. .. .. . 13.24 
13.11 PAQUETE DEL FIRME . . . .. . .. . .. .. .. . .. . .. .. .. .. .. .. .. .. .. .. . .. . .. .. .. . .... . .. .. . .. .. .. .. .. . .. .. .. . .. .. .. . .. . 13.25 
13.11.1 EXPLANADA . . . . . . . . . . .. . . . . . . . . . .. . . . .. . .. .. .. . .. .. . . .. . .. . ... .. .. . . .. . .. .. ... . .... . .. .. .. .. . .. . . .. . .. 13.25 
13.11.2 OTRAS CAPAS SUPERIORES .. .. .. .. .. .... .. .. ... .. .. . .. .. .. .. . .. . .. .. .. .. .... .. .. .. .. .. .... .. .. 13.26 
13.12 UTILIZACION DEL COMPACTADOR DE NEUMATICOS Y EL DE TAMBORES 
VIBRATORIOS . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . .. . .. .. . .. .. . . .. . .. . . . . . . . . . . . .. . . .. .. . . . . . . . .. . . . . . . . . . . . .. . . . . . . . 13.27 
8 
13.13 PRESAS DE MATERIALES SUELTOS ............... . .... .................... .. ... .. . .... ....... ... . .. . . 13.28 
13.13.1 TIERRAS .... ... ..... . ... .. . . ....... . .. . .... .... ... ... .. .. ... . . .. .. ... . ..... .. ... ... . ... . ........ .. . ... . 13.28 
13.13.2 ESCOLLERA ... ... .. ..... .. . .... . .. . . . ... . .. . . . ... ... . ... .. ..... ... .. .. .. . . ........ .. . . ... . .... ....... 13.28 
13.14 RANGO DE ESPESORES DE MATERIALES, DENSIDADES, HUMEDADES ... .. . .. ... .. .. ... 13.29 
13.15 RANGO DE ESPESORES Y METODO DE COMPACTACION EN MOV. DE TIERRAS . ... . . 13.29 
13.16 TRAMO DE PRUEBA Y DETERMINACION DE LA PRODUCCION ......... ..... ... . ... .. ... . ... 13.30 
13.17 CASOS PRACTICOS Y EJERCICIOS .. .. . .. .... ....... .. . ..... .. ... .. ... .. .... .. .... .. . .. . .. . ... ... . .. . ... .. 13.33 
C.P. 13.1 RENDIMIENTOS DE OBRAS ....... . ... .. ... ..... .......... .. ....... .. . . . . .... ... .... .... .... 13.33 
APENDICE 13.1 CONTROL CONTINUO DE COMPACTACION (METODO FRANCES) .. .. . . . . . . 13.36 
APENDICE 13.2 NORMAS Y EQUIVALENCIA DE UNIDADES . . . .. .... ... .. . . . .. . . .. . . .. . . .. .. .. .. . . . . . . 13.38 
CAPITULO 14.- ANEXO l. INTRODUCCION A LA COMPACTACION 
VIBRATORIA 
14.1 METODOS DE COMPACTACION .... .. .. .. .. .. .. . .. . .. .. .. .. . ... .. .. .. . .. ... .. .. . .. . . .. .. .. .. . . .. . . . . . .. . 14.1 
14.2 SISTEMA DE VIBRACION DE UN COMPACTADOR VIBRATORIO DE SUELOS ... .. . ... .. . 14.2 
14.3 PARAMETROS DE UN COMPACTADOR VIBRATORIO DE SUELOS . .. .. . . .. . . . . . ... . . . . . . . . . . 14.2 
14.4 FRECUENCIA DE VIBRACION.. ........ .. ... ....... . ... . ....... .. ... .. .. ... ... ... . . . .. . .. . .... ... ... . ...... . 14 .. 3 
14.5 FRECUENCIA DE RESONANCIA . .. .. . .. . . . . . . . . . . . . . . . . .. . .. . . .. . . . . . . . . .. .. .. . . . . . . .. . . .. . . . . . . . .. . . . . . . . 14 .. 4 
14.6 AMPLITUD DEL MOVIMIENTO VIBRATORIO . . . . .. . . .. .. . .. .. .. .. .. . .. . . . . . . . . . . . . . . .. . .. . .. .. . .. . 14 . .4 
13.4.1 SUELOS PERMEABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 14.11 
13.4.2 SUELOS IMPERMEABLES . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . .. . . . . . . .. . . . . . . . . . . . . . .. . . . . . . . 14.11 
14.7 FUERZA CENTRIFUGA Y FUERZA APLICADA . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . .. . . . . . . . . . . . . . . . . 14 .. 4 
14.8 IMPACTO Y ONDAS DE PRESION . . .. . . . . . . .. . . .. . .. .. . . . . .. . . .. . . .. .. . .. .. .. .. . . . . . . .. . . . . .. .. .. . . .. .. .. 14 .. 4 
14.9 ESPACIAMIENTO ... . ......... .. .......... ... ............... .. .. .... ......... . ..... . ... .. .. . ....... .. . ... . ..... 14 .. 4 
14.10 EFECTOS PRINCIPALES QUE PRODUCE LA VIBRACION EN EL SUELO . . . . . . . . . . . . . . . . . . . 14.8 
14.11 SISTEMAS VIBRATORIOS . .. .. . . . .. . . .. . . . . .. .. . . . .. . . .. . . .. . .. . . . . . . .. . . . . . . . . . . . . .. . . .. . . . . . . . . . . . . . ... . . 14.9 
14.11.1 VIBRACION CIRCULAR .. . ... .. .. . . . . .. . . .. . . .. . . .. .. .... .... ............ . . . . . ... .. .. .. . . . . . .. .. . . . 14.9 
14.11.2 DOBLE VIBRACION CIRCULAR . .. .. . . .. . . . . ... .. .. .. . .. .. .. . . .. . .. . . . . . . . .. .. . . . . .. .. .. . . . . . .. . 14.10 
APENDICE 14.1 COMPACTADO RES DE ALTO IMPACTO .. .. .. .. . . . .. . . .. . .. . . . .. . .. . . . .. . . .. . .. .. . .. . .. 14.10 
APENDICE 14.2 MEDIDOR CONTINUO DE COMPACTACION .. .. .. .. .. .. .. .. .. .. .. . . . . . . .. . . . . . ... .. .. . 14.12 
BIBLIOGRAFIA DE EXTENDIDO Y COMPACTACION .. .. . . . . . . . . . ... .. .... .. . . .. . .. . ... . . ... ... . . . . .. . . . . . 14.12 
ANEXO 2. PROCEDIMIENTOS DE MEJORA DEL TERRENO POR 
VIBROFLOTACION Y VIBROSUSTITUCION 
14.12 APLICACIONES . .. .. .. . . . .. .. . .. .. .. . . . . . . . . . . .. . . . . . . . .. . .. .. . .. .. .. .. . . .. .. . . . .. . . . . . . .. .. . . . . . . . . . . . . . . . . . . . 14.13 
14.13 VIBROFLOTACION .. . .. . .... ..... .. .... ... . . .... .. .. .. . . . . .. .. . ..... .. . .. .. .. .. . .. . .. . .. ... . .. . . ... . . . . . . . . . .. 14.13 
14.14 VIBROSUSTITUCION .... .. .. .. ..... ......... ... . . .. ... ..... ... .... . ....... . .... . .... .. ............... . ... . .. . 14.17 
9 
CAPITULO 15.- DIAGRAMA DE MASAS ............... .. ... ............... .. ....... ........ .. 
CAPITULO 16.- LA SEGURIDAD Y SALUD EN EL MOVIMIENTO DE 
TIERRAS 
16.1 PREVENCION ....... . . ... ..................... . ..... .. ... . .. . ... ... .... ...... .. .. . ... .. .... ... . ........ . . .... . . . 
15.1 
16.1 
16.2 OBRAS DE TUNEL .............. .. .......... . .. ... . .... ..... . . .. .. . ........... .. . ....... . ...... . .......... .. .. . . 16.1 
16.3 CASO DE VACIADO DE SOLARES . .. . ............ ... . ........ .. . ... . ... . .. ........ ........ .......... .... .. 16.2 
16.4 EXCAVACIONES SOBRE CONDUCCIONES DE GAS Y ELECTRICIDAD . . . . . . . . . . . . . . . . . . . . . . . 16.3 
16.5 CASO DE OBRAS A CIELO ABIERTO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.5 
16.5.1 LINEAS ELECTRICAS ........ . ............ ....... . . . . .. ... . ...................... .. . ..... ... ...... . ... 16.5 
16.5.2 SEGURIDAD EN LAS MAQUINAS . . . . . . . .. . . . . . . . . . . . . . .. .. .. .. . . .. . . .. .. . . . . . . . . . . . . . .. . . . . . . . . . 16.6 
CAPITULO 17.- EL IMPACTO AMBIENTAL EN LAS OBRAS DE 
MOVIMIENTO DE TIERRAS 
17.1 PROTECCION DE LAS ACTUACIONES GEOMORFOLOGICAS 17.1 
17.2 ALTERACIONES TEMPORALES DURANTE LA FASE DE OBRAS ... ......................... . . . 17.2 
10 
r 
( 
( 
( 
( 
r 
( 
( 
( 
( 
( 
( 
( 
l 
1.1 
CAPITULO 1 
CAMBIOS DE VOLUMEN EN MOVIMIENTOS DE TIERRAS. 
1.1 EL MOVIMIENTO DE TIERRAS. 
Se denomina movimiento de tierras al conjunto de operaciones que se realizan con los 
terrenos naturales, a fin de modificar las formas de la naturaleza o de aportar materiales útiles 
en obras públicas, minería o industria. 
Las operaciones del movimiento de tierras en el caso más general son: 
- Excavación o arranq uc. 
- Carga. 
- Acarreo. 
- Descarga. 
- Extendido. 
- Humectación o desecación. 
- Compactación. 
- Servicios auxiliares (refinos, sancos, etc.). 
Los materiales se encuentranen la naturaleza en formaciones de muy diverso tipo, que 
se denominan bancos, en perfil cuando están en la traza de una carretera, y en préstamos 
fuera de ella. La excavación consiste en extraer o separar del banco porciones de su material. 
Cada terreno presenta distinta dificultad a su excavabilidad y por ello en cada caso se precisan 
medios diferentes para afrontar con éxito su excavación. 
Los productos de excavación se colocan en un medio de transporte mediante la 
operación de carga. Una vez llegado a su destino, el material es depositado mediante la 
operación de descarga. Esta puede hacerse sobre el propio terreno, en tolvas dispuestas a tal 
efecto, etc. 
Para su aplicación en obras públicas, es frecuente formar, con el material aportado, 
capas de espesor aproximadamente uniforme, mediante la operación de extendido. 
De acuerdo con la función que van a desempeñar las construcciones hechas con los 
terrenos naturales aportados, es indispensable un comportamiento mecánico adecuado, una 
protección frente a la humedad, etc. Estos objetivos se consiguen mediante la operación llamada 
compactación, que debido a un apisonado enérgico del material consigue las cualidades 
indicadas. 
A través de los sucesivos capítulos del libro se expondrán las distintas operaciones que 
comporta el movimiento de tierras, prestando atención a la maquinaria que actualmente se 
emplea, sus ciclos de trabajo y producciones, con ejercicios y casos prácticos. 
1.2 
1.2 OBJETO DEL CAPITULO. 
El estudio de los cambios de volumen tiene interés porque en el proyecto de ejecución 
de una obra de movinúento de tierras, los planos están con sus magnitudes geométricas, y todas 
las mediciones son cubicaciones de m3 en perfil y no pesos, ya que las densidades no se conocen 
exactamente. Los terraplenes se abonan por m 3 medidos sobre los planos de los perfiles 
transversales. 
Los materiales provienen de industrias transformadoras, graveras, canteras, centrales 
de mezclas, o de la propia naturaleza. En este caso el material ha sufrido transformaciones, y 
ha pasado de un estado natural en banco o yacimiento a un perfil, mediante las operaciones 
citadas anteriormente. 
En la excavaciones hay un aumento de volumen a tener en cuneta en el acarreo, y una 
consolidación y compactación en la colocación en el perfil. 
En los medios de acarreo hay que considerar la capacidad de la caja en volumen y en 
toneladas, y elegir la menor de acuerdo con la densidad. 
1.3 CAMBIOS DE VOLUMEN. 
Los terrt:nos, ya sean suelos o rocas mas o menos fragmentadas, están constituidos por 
la agregación de partículas de tamaños muy variados. Entre estas partículas quedan huecos, 
ocupados por aire y agua. 
Si mediante una acción mecánica variamos la ordenación de esas partículas, 
modificaremos así mismo el volumen de huecos. 
Es decir, el volumen de una porción de material no es fijo, sino que depende de las 
acciones mecánicas a que lo sometamos. El volumen que ocupa en una situación dada se llama 
volumen aparente. 
Por esta razón, se habla también de densidad aparente, como cociente entre la masa de 
una porción de terreno, y su volumen aparente: 
d = a 
d1 = densidad aparente. v. = volumen aparente. 
M = masa de las partículas + masa de agua. 
El movimiento de tierras se lleva a cabo fundamentalemnte mediante acciones mecánicas 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
1.3 
sobre los terrenos. Se causa así un cambio de volumen aparente, unas veces como efecto 
secundario (aumenlo del volumen aparente mediante la excavación) y otras como objetivo 
intermedio para conseguir la mejora del comportamiento mecánico ( disminución mediante 
apisonado). 
La figura 1.1 presenta esquematicamente la operación de cambio de volumen. 
Material en banco Material suelto Material compactado 
Fig.1.1 
En la práctica se toma como referencia 1 m 3 de material en banco y los volúmenes 
aparentes en las diferentes fases se expresan con referencia a ese m3 inicial de terreno en 
banco. 
La figura 1.2 representa la evolución del volumen aparente (tomando como referencia 
1 m3 de material en banco), durante las diferentes fases del movimiento de tierras. 
Mientras no se produzcan pérdidas o adición de agua, una porción de suelo o rocas , 
mantendrá constante el producto de su densidad aparente por su volumen aparente, siendo esta 
constante la masa de la porción de terreno que se manipula. 
En el movimiento de tierras esta limitación se satisface muy pocas veces (evaporación, 
expulsión de agua durante el apisonado, adición de agua para facilitar el apisonado, cte.), por 
lo que la ecuación anterior no es de aplicación general. 
1.4 
VOLUMENES APARENTES 
EXCAVACION CARGA TRANSPORTE 
VOLUMEN 
EN BANÓJ 
l 'o 
~.ffiin 
VOLADA 
2,0 
CARGADA 
1 
1,25 a _l,50 
Fig. 1.2 
COMPACTACION 
PISADA 
COMPACTADA 
MACHAQUEO 
PRIMARIO 
~ TRITURl,CION 
~ 
1,30 :··l,40~ 
::~ ~~·'.:f~~}f:-li. 
1 ,.20 a l, 30 
En adelante se entenderá que los conceptos de volumen y densidad se refieren a 
volumen aparente y densidad aparente, aunque se omita el adjetivo aparente. 
La Figura .1.3 indica variaciones en volúmenes y densidades en las operaciones 
movimiento de tierras comentados en el apartado 1.1. 
0-1 Volumen en banco 
1-2 Excavación o voladura 
2-3 Carga 
3-5 Acarreo 
5-6 Descarga-extendido 
6-7 Compactación 
Peso 
6 
Fig. 1.3 Volúmenes y densidades en el movimiento de tierras. 
1.4 ESPONJAMIENTO Y FACTOR DE ESPONJAMIENTO. 
del 
Al excavar el material en banco, éste resulta removido con lo que se provoca un 
aumento de volumen. 
Este hecho ha de ser tenido en cuenta para calcular la producción de excavación y 
dimensionar adecuadamente los medios de transporte necesarios. 
( 
( 
(' 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
1.5 
En todo momento se debe saber si los volúmenes de material que se manejan 
corresponden al material en banco (Banco, bank, B) o al material ya excavado (Suelto, loose, 
S). 
Se denomina factor de esponjamiento (Swell factor) a la relación de volúmenes antes 
y después de la excavación. 
F = w 
Fw = factor de esponjamiento (sweel) 
V 8 = volumen que ocupa el material en banco 
V s = volumen que ocupa el material suelto 
d8 = densidad en banco 
d5 = densidad del material suelto. 
Se tiene que, 
El factor de esponjamiento es < 1 . Sin embargo si en otro texto figura otra tabla con 
factores > 1, quiere decir que están tomando la inversa, o sea p' = V 5/ V 8 y si se desean empicar 
las fórmulas expuestas aquí, deben invertirse. 
Otra relación interesante es la que se conoce como porcentaje de esponjamiento. Se 
denomina así al incremento de volumen que experimenta el material respecto al que tenía en 
el banco, o sea: 
Sw % de esponjamiento 
s = w 
V - V 
S B X 100 
VB 
O en función de las densidades: 
Son frecuentes tablas en las que aparece el valor del esponjamiento para diferentes 
materiales al ser excavados. Conviene por ello deducir la relación entre volúmenes o densidades 
en banco y en material suelto. Para volúmenes se tiene: 
dB = ( Sw + 1) x d 
100 8 
1.6 
Para densidades resulta: 
s 
dB = (-W- + 1) X d 
100 s 
El % de esponjamiento y el factor de esponjamiento están relacionados: 
1 
s 
( 10~ + 1) X ds + 1 
y por consiguiente conociendo el % de esponjamiento de un material se conoce su factor de 
esponjanúento, y viceversa, sin más que operar en la expresión anterior. 
EJ1 la tabla 1.1 aparecen los valores de Fw y Sw característicos de distintos materiales 
frecuentes en movimiento de tierras. 
1.5 CONSOLIDACION Y COMPACTACION. 
Las obras realizadas con tierras han de ser apisonadas enérgicamente para conseguir un 
comportamiento mecánico acorde con el uso al que están destinadas. Este proceso se conoce 
genéricamente como compactación y consolidación del material (Shrinkage). 
La compactación ocasiona un11 disminución de volumenque ha de tenerse en cuenta para 
calcular la cantidad de material necesaria para costruir una obra de tierras de volumen conocido. 
Se denomina factor de consolidación a la relación entre el volumen del material en 
banco y el volumen que ocupa una vez compactado. 
Fh = factor de consolidación (shrinkage) 
V e = volumen de material compactado. 
Si en el proceso de compactación y consolidación no ha habido pérdida ni adición de 
agua (lo que es poco frecuente), el factor de consolidación puede expresarse según Ya x dª = 
M de la forma: 
Fh = factor de consolidación. 
d8 = densidad del material en banco. 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
1.7 
Otra relación interesante es la que llamaremos % de consolidación. Expresa el % que 
representa la variación de volumen del material en banco al material compactado, respecto al 
volumen del material en banco, multiplicada por 100: 
Con ello la relación entre volumen en banco y volumen del material compactado queda: 
V = B 
1 -
1 
Sb % de consolidación. 
Si en el proceso de compactación y consolidación no hay pérdida ni adición dv agua (lo 
que no es frecuente) es de aplicación la expresión Va x da = M y el % de consolidación puede 
expresarse como: 
de - dB 
Sh = --- X 100 
de 
Sh = % de consolidación 
En este caso la relación entre densidades es: 
En cualquier caso, de las expresiones del factor de consolidación y el % de consolidación 
se deduce que estos están relacionados por la expresión: 
1 
1 -
1.6 VALORES DEL ESPONJAMIENTO Y SU FACTOR. 
En cada caso concreto conviene estudiar los valores de Fw, Sw, para poder calcular con 
exactitud los cambios de volumen que va a experimentar el material en las distintas operaciones. 
A falta de un estudio particular, pueden adoptarse los valores que aparecen en la labia 
1.1. 
1.8 
MATERIAL d1 (t/m3) d¡¡ ( t/m3) Sw (%) Fw 
CALIZA 1,54 2,61 70 0,59 
ARCILLA: Estado natural 1,66 2,02 22 0,83 
Seca 1,48 1,84 25 0,81 
Húmeda 1,66 2,08 25 0,80 
ARCILLA Y GRAVA: Seca 1,42 1,66 17 0,86 
Húmeda 1,54 1,84 20 0,84 
ROCA ALTERADA: 
75% Roca - 25% Tierra 1,96 2,79 43 0,70 
50% Roca - 50% Tierra 1,72 2,28 33 0,75 
25% Roca - 75% Tierra 1,57 1,06 25 0,80 
TIERRA: Seca 1,51 1,90 25 0,80 
Húmeda 1,60 2,02 26 0,79 
Barro 1,25 1,54 23 0,81 
GRANITO FRAGMENTADO 1,66 2,73 64 0,61 
GRAVA: Natural 1,93 2,17 13 0,89 
Seca 1,51 1,69 13 0,89 
Seca de 6 a 50 mm. 1,69 1,90 13 0,89 
Mojada de 6 a 50 mm. 2,02 2,26 13 0,89 
ARENA Y ARCILLA 1,60 2,02 26 0,79 
YESO FRAGM~TAOO 1,81 3,17 75 0,57 
ARENISCA 1,51 2,52 67 0,60 
ARENA: Seca 1,42 1,60 13 0,89 
Húmeda 1,69 1,90 13 0,89 
Empapada 1,84 2,08 13 0,89 
TIERRA Y GRAVA: Seca 1, 72 1,93 13 0,89 
Húmeda 2,02 2,23 10 0,91 
TIERRA VEGETAL 0,95 1,37 44 0,69 
BASALTOS O DIABASAS FRAGMENTADAS 1,75 2,61 49 0,67 
NIEVE: Seca 0,13 --- -- ---
Húmeda 0,52 --- -- ---
Tabla 1.1 Densidades y cambios de volumen. 
Al dimensionar los medios de transporte habrá de tenerse en cuenta no solo la capacidad 
l 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
1.9 
(m 3) que cada vehículo tiene, smo considerar su carga máxima. Para no sobrepasada es 
necesano conocer la densidad del material que se transporta. 
En la tabla J .1 se exponen las densidades del material en banco y suelto, para los casos 
más frecuentes del movimiento de tierras. Respecto al transporte, ba de considerarse la densidad 
del material suelto. 
1.7 CONSIDERACIONES PRACTICAS EN EL EXTENDIDO DE CAPAS. 
La compactación en obra se realiza sobre capas de material, previamente extendido, que 
se conocen con el nombre de tongadas. 
El efecto de la compactación sobre la tongada se refleja exclusivamente en la 
disminución de alttrra, puesto que sus dimensiones horizontales apenas vanan. 
En la figura 1.4 se observa como al compactar una tongada de material (capa rayada en 
el dibujo), su anchura "a" y su longitud "l" no varían, mientras que su espesor "hL" pasa a ser, por 
efecto de la compactación, "he"· 
Fig. 1.4 
Por lo anterior queda claro que el cambio de volumen del material está fielmente 
reflejado en el cambio de altura de la tongada. 
Habida cuenta que el proyecto constructivo fija la altura de tongada en perfil, o sea 
después de la compactación he , conviene conocer la relación entre he y hL para extender las 
tongadas con el espesor hL adecuado. 
1.10 
Se denomina disminución de espesor a la relación entre la diierencia de espesor 
producida por la compactación y el espesor inicial, multiplicada por 100: 
hL - he 
= --- X 100 
hL 
Se = % de disminución de espesor (en obra lo llaman impropiamente esponjamiento). 
h, = espesor inicial de tongada 
he = espesor de la tongada después de la compactación 
La disminución de espesor depende del tipo de material, métodos de compactación, etc. 
Sin embargo, en los materiales granulares (gravas, 
frecuentes en la compactación 
sensibilidad a la humedad, 
aproximadamente el 20 % 
En el caso general: 
debido a su excelente 
etc., se ha observado 
100 - se 
= hL X 
100 
suelos-cemento, zahorras, etc.) muy 
comportamiento mecánico, su escasa 
que la disminución de espesor es 
Cuando se trata de terrenos granulares (Se "' 20, hay que comprobarlo en cada caso en 
la obra): 
O bien: 
Estas consideraciones hao de tenerse presentes en la operación de extendido con 
motoniveladoras o extendedoras, es decir, que la producción de una motoniveladora en 
extendido (material suelto) no coincide con la del compactador (material compactado). 
( 
(' 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
2.1 
CAPITULO 2 
ECUACION DEL MOVIMIENTO 
2.1 OBJETO DEL CAPITULO. 
El objeto de este capítulo es la determinación de la velocidad de traslación a la que 
pueden funcionar las máquinas de movimiento de tierras durante su trabajo. Para dicho cálculo 
será necesario conocer las características de la máquina (peso, potencia) y las del terreno sobre 
el que se desplaza y su pendiente. 
En este capítulo se estudiarán los tipos de tracción de las máquinas y los tipos de 
resistencia al movimiento. 
2.2 ESFUERZO TRACTOR. 
2.2. l TRACCION DISPONIBLE. 
RUEDA MOTRJZ 
MOTOR 
TRACCION DISPONIBLE (T 0 ) 
Tn = F = Poi / V 
Fig. 2.1 
U na máquina dispondrá de una potencia 
para desplazarse producida por el motor 
(unidad motriz) y que se aplicará en las 
ruedas motrices mediante la transmisión. 
Al esfuerzo, producido por el motor y la 
transmisión, se denominará tracción 
disponible o esfuerzo de tracción a la 
rueda, siendo ésta el diámetro total del 
neumático, o en el caso de cadenas el 
diámetro de la rueda cabilla (rueda 
motriz). La definición de esta tracción es, 
por tanto, la fuerza que un molar puede 
transmitir al suelo. 
La tracción disponible se puede calcular de forma aproximada para cada velocidad de 
marcha mediante la expresión: 
367 x Potencia (KW) x Rend. Transmisi ón 
Velocidad (km/h) 
2.2 
El rendimiento de la transmisión, también llamado eficiencia mecánica, es la relación 
entre potencia que llega al eje motriz y potencia del motor. Los valores más comunes se 
encuentran entre el 70% y el 85%. 
2.2.2 TRACCION UTILIZABLE. 
La máquina en función de su peso dispondrá de una fuerza determinada que se llama 
tracción utilizable. Esta tracción depende del porcentaje del peso que gravita sobre las ruedas 
motrices, que es él útil para empujar o tirar del vehículo, y de las superficies en contacto, 
especialmente área, textura y rugosidad, tanto de las ruedas motrices como del suelo. 
PESO (W 0 ) 
,- --- -, 
l 
r- --/ 
~ 1 MOTOR 
L----1_ ___ _ 
~cosa 
TRACCION UTILIZABLE (Tu) 
Fig. 2.3 
Fig. 2.2 
En caso de pendiente sería su componente normal, W Cos a, Fig. 2.3. 
Para calcular la tracción utilizable se ha de multiplicar el peso total que gravita sobre 
las ruedas motrices por e1 factor de eficiencia a la tracción o coeficiente de tracción, cuyos 
valores más comunes se encuentran en la tabla 2.1.La tracción utilizable es independiente de la potencia del motor y se calcula mediante 
la expresión: 
Tu ( Kg) ;:: Wn ( Kg) x f r ( en % ) 
siendo W O el peso que soportan las ruedas motrices y fT el coeficiente de tracción en % 
En el cálculo de la adherencia hay que tener en cuenta el número de ruedas motrices y 
la carga soportada por las mismas, que se denomina peso adherente. 
En los vehículos que llevan ruedas motrices y ruedas portantes se puede admitir en 
primera aproximación que las ruedas motrices soportan entre 1/2 y 2/3 de la carga total. 
( 
( 
( 
r 
( 
' ( 
( 
( 
( 
( 
( 
( 
( 
' ( 
( 
( 
2.3 
FACTORES DE TRACCION FT 
TIPOS DE TERRENO 
Hormigón o asfalto 
Arcilla seca 
Arcilla húmeda 
Arcilla con huellas de rodada 
Arena seca 
Arena húmeda 
Canteras 
Camino de grava suelta 
Nieve compacta 
Hielo 
Tierra firme 
Tierra suelta 
Carbón apilado 
NEUMATICOS 
0,90 
0,55 
0,45 
0,40 
0,20 
0,40 
0,65 
0,36 
0,20 
0,12 
0,55 
0,45 
0,45 
Tabla 2.1 Factores de tracción. 
CADENAS 
0,45 
0,90 
0,70 
0,70 
0,30 
0,50 
0,55 
0,50 
0,27 
0,12 
0,90 
0,60 
0,60 
FUENTE CAT PH. 
En movimiento de tierras hay tendencia a elegir, siempre que sea posible, maquinaria 
de tracción total, es decir, tracción a todos los ejes; en el caso de camiones dúmpers y dúmpers 
articulados, que se verán en el capítulo correspondiente, la tracción puede estar aplicada al eje 
de dirección y a los posteriores. 
Hoy todas las cargadoras son de tracción total, es decir, a los dos ejes, y esto se 
simplifica con el sistema articulado, en donde la dirección se realiza actuando en la articulación 
con cilindros hidráulicos, en vez de poner los dispositivos con la complejidad mecánica que 
llevan los tractores agrícolas con tracción también al eje de dirección delantera, en los cuales 
no se puede obviar este problema al ser rígidos. 
En los tractores y cargadoras de cadenas todo su peso es tracción utilizable. 
2.3 BALANCE ENTRE TRACCION DISPONIBLE Y TRACCION UTILIZABLE 
Una vez estudiados los tipos de tracción habrá que ver el movimiento del vehículo. 
Dicho movimiento se basa en la reacción de sus ruedas o cadenas sobre el terreno, al cual le 
transmite el esfuerzo T O que produce el par motor. 
Si el esfuerzo de tracción TO es 
mayor que el esfuerzo máximo de reacción 
del terreno Tu se produce el deslizamiento, 
por lo que las ruedas patinan y la máquina 
avanza menos o puede llegar a detenerse. 
Por el contrario cuando Tu es 
mayor que TO hay adherencia entre ruedas 
y suelo y el vehículo avanz.a correctamente. 
De todo lo anterior se deduce que de 
2.4 
i 
/ Í 
/ 
~ 
7j, 
ADHERENCIA 
DESLIZAMIENTO 
fT = tg f 
Fig. 2.4 
nada sirve que una máquina tenga un grupo propulsor muy potente ( que desarrolla mucha 
tracción disponible), si no tiene el peso suficiente para conseguir un esfuerzo tractor (tracción 
utilizable). Por lo tanto, uno de los criterios de elección de una máquina de movimiento de 
tierras es el de elegir máquinas con un equilibrio entre el grupo motopropulsor y el peso de la 
misma. Se entiende por grupo motopropulsor el conjunto de motor y órganos de transmisión con 
sus reductoras. 
2.4 RESISTENCIA A LA TRACCION 
2.4.1 RESISTENCIA A LA RODADURA. 
Es la resistencia principal que se opone al movimiento de un equipo sobre una superficie 
plana. 
Se admite que es proporcional al peso 
total del vehículo, y se expresa por: 
RR (Kg) = fR (Kg/t) X w (t) 
siendo RR:Resistencia a la rodadura 
f R: factor de resistencia a la rodadura 
W: peso del vehículo. 
La resistencia a la rodadura depende del 
tipo de terreno y tipo de elementos motrices, 
neumáticos o cadenas. Los valores más 
frecuentemente utilizados se recogen en la Tabla 
2.2. 
Jli\JA PENETRACION 
llAJA RESISTENCIA A LA RODADURA 
ALTA PENETRi\CION 
ALTA RESISTENCIA A I.A RODADURA 
Fig. 2.5 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
2.5 
RUEDAS 
Alta Baja 
TERRENO presión"' presión 
Hormigón 1 i so ...................... . 17 
Asfalto en buen estado .......... . 
Camino firme,superficie plana, 
ligera flexión bajo la carga 
( buenas condiciones) ........... . 
Camino blando de tierra(superfi-
cie irregular con una penetración 
de neumáticos de 2 a 3 cm) ...... . 
Camino blando de tierra(superfi-
cie irregular,con una penetración 
de neumáticos de 10 a 15 cm) .•... 
Arena o grava suelta ...•....•..•. 
Camino blando,fangoso,irregular o 
arenoso con más de 15 cm de 
penetración de los neumáticos ..•. 
20-32 
20-35 
50-70 
90-110 
130-145 
150-200 
22 
25-30 
25-35 
35-50 
75-100 
110-130 
140-170 
* Se puede considerar alta presión> 5 Kg/cm2, llevando ésta dumpers y traíllas. 
CADENAS 
27 
30-35 
30-40 
40-45 
70-90 
80-100 
100-120 
Tabla 2.2 Factores de resistencia a la rodadura fR (Kg/t). FUENTE A. DA Y, 
En general cualquier vehículo de ruedas con neumáticos debe vencer una resistencia del 
orden de 20 kg/t. cuando se desplaza sobre caminos o carreteras donde las cubiertas no acusan 
ninguna penetración. 
Dicha resistencia aumentará en torno a 6 kg/t. por cada incremento de penetración de 
las ruedas en el terreno de 1 cm. 
Esta resistencia también engloba la fricción de los engranajes internos y la flexión lateral 
de los neumáticos. 
Existe una expres1on que calcula, aproximadamente, el coeficiente de resistencia a la 
rodadura: fR = 20 + 4h, siendo h la deformación del neumático y el hundimiento del suelo (o 
huella bajo la carga) medida en centímetros. 
De todas formas, decir que hay una resistencia a la rodadura fija para un determinado 
tipo de carretera o camino es erróneo, puesto que el tamaño del neumático, la presión de inflado 
y la velocidad hacen variar dicha resistencia. Como en movimiento de tierras las velocidades son 
menores de 80 Km/h, puede considerarse que no afecta la velocidad. Simplificando, se pueden 
asignar valores generales a varios tipos de firmes, Tabla 2.2. 
2.6 
2.4.2 RESISTENCIA A LA PENDIENTE. 
Es la componente del peso del vehículo paralela al plano de rodadura. La expresión de 
dicha resistencia es: 
R p = W x sen a. - Rp(kg) = 1000 x W(t.) x sen a 
para pendientes de hasta el 20% se puede hacer la siguiente simplificación: 
sen a= tan a= ____i_ ; i (en%) - Rp(Kg) = ±10 xi x W(t) 
100 
siendo ( +) si el vehículo sube y (-) si baja. 
Por consiguiente la resistencia en rampa ( o la resistencia a la pendiente) es de 10 kg/t. 
Fig. 2.6 
- RESISTENCIA 
- TOTAL 
RESISTENCIA RESISTENCIA 
A LA ROOAOURA A LA PENDIENTE 
Fig. 2.7 
por cada 1% de rampa (o de pendiente). 
Recíprocamente 1 % de pendiente ( o de 
rampa) equivale a 10 kg/t. de 
incremento de esfuerzo tractor. 
De todo lo anterior se obtiene 
que la cantidad de kg-fuerza de tracción 
requeridos para mover un vehículo es la 
suma de los necesarios para vencer la 
resistencia a la rodadura y los 
requeridos para vencer la resistencia a la 
pendiente, es decir, 
R,otal =IR X W ± 10 Xi X W 
R,,,t.al (kg) = 10 x W (t) x ( IR (kg/l) ± i ) 
10 
donde f R/10 se puede poner como una 
pendiente equivalente. A continuación se 
desarrolla una aplicación de las expresiones 
anteriores. 
Dada una máquina cuyo peso es de W = 22 t, la cual se desplaza por una superficie que 
tiene una pendiente i = -3% y con un coeficiente de resistencia a la rodadura de 50 kg/t que 
equivale a una pendiente ficticia del 5%, se pide calcular la resistencia total que tiene que 
r 
( 
( 
( 
( 
( 
( 
( 
( 
' 
( 
( 
( 
( 
( 
( 
( 
( 
2.7 
vencer la máquina en sus desplazamientos. Dicha resistencia total será: 
R, = 50 kg/t x 22 t - 3% x 22.000 kg= 440 kg 
o bien R, = 10 x 22 x (5 - 3) = 440 kg 
2.4.3 RESISTENCIA A LA ACELERACION 
Es la fuerza de inercia. 
Supuesta una aceleración uniforme para pasar de la velocidad v1 a v2 en un tiempo t: 
dv 
a= -
dt 
La resistencia para acelerar la masa de un vehículo de peso W(t.) será: 
para v1 O y v2 = v quedará: 
1000~ lOOO(v2 -v¡) - R = 28 29 W(v2 -v,) 
9,81 3600!A ' t 
RA (kg) = 28,29 x W (t.) x v (km/h) 
t (seg) 
También se puede expresar esta resistencia en función de la distancia recorrida por el 
vehículo, d(m): 
2d 
sustituyendo este valor de aceleración en la expresión de la resistencia a la aceleración resulta: 
w v; - v¡ v; (Km/h) - v¡ (Km/h) 
RA = -- x - -- = 3,93 x W(t) x ---------
9,81 2d d (m) 
Por ejemplo, si un vehículo, desplazándose cuesta abajo, quiere frenar en una distancia 
d (m), cuando circule a una velocidad v (km/h), el esfuerzo de frenado será: 
v2 
- 3,93 X W X -
d 
Esta resistencia a la aceleración es poco importante en movimiento de tierras, pero en 
el caso de frenado cobra cierta importancia ya que interesa conocer la distancia o el esfuerzo 
de frenado del vehículo. 
2.8 
2.4.4 RESISTENCIA AL AIRE. 
Esla resistencia no se suele tener en cuenta dado que las velocidades de los vehículos 
y maquínaria de obra son pequeñas y se sabe que la resistencia al aire es proporcional al 
cuadrado de la velocidad. De modo que RAIRE = K x S x V 2 siendo V (m/s.) la velocidad del 
vehículo, S la superficie desplazada normal a la dirección del movimiento y K un coeficiente que 
depende de la forma de la máquina (más o menos aerodinámica) y que está comprendido enlre 
0,02 y 0,08. 
Sin embargo, contra viento fuerte la resistencia al aire es un factor significativo. La 
cantidad determinante es el movimiento relativo del aire respecto al vehículo. Si la velocidad 
de la máquína es de 16 km/h. y la velocidad del aire en sentido contrario es de 64 km/h la 
velocidad relativa resultante será de 80 km/h. La resistencia al aire deberá tenerse en cuenta 
para valores de velocidad relativa superiores a 80 km/h. 
2.5 ECUACION DEL MOVIMIENTO Y DETERMINACIÓN DE VELOCIDADES. 
Definidas todas las fuerzas que actúan en el movimiento de las máquinas de movimiento 
de tierras, ahora hay que estudiar las relaciones entre ellas. 
Los factores que se oponen al movimiento son: 
Resistencia a la rodadura: RR == fR x W 
Resistencia a la pendiente: Rr == ± 10 x i x W 
Resistencia a la aceleración: Racel. == 28,29 x W x v /t ó Racel. 
Resistencia al aire: Rai,c = K x S x v2 
3,93 X W X v2/t 
La resistencia total será la suma de todas las anteriores, cuya expresión será: 
Rroro1 = IR X w ± 10 X i X w + Ra,el + K X s X v2 
Si no se consideran, como se dijo anteriormente, las resistencia a la aceleración y la 
resistencia al aire resulta: 
Rrotal = /R X W ± 10 X i X W 
El esfuerzo que la máquina debe suministrar a los elementos motrices para superar las 
resistencias antes enumeradas es el menor de los siguíentes valores: 
- Tracción utilizable: Tu == W fT para que exista adherencia y el vehículo avance. 
- Tracción disponible: ( es función de la velocidad) T 0 . Esta variará en función de la marcha y 
r 
( 
( 
( 
( 
( 
í 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
2.9 
de la velocidad alcanzada por la máquina. Se deberá tener que: 
T D Y TU 2:: RTotal 
Recíprocamente, conocida la resistencia total y las tracciones utili.7..able y potencia útil 
se puede obtener la máxima velocidad que es capaz de alcanzar la máquina en sus 
desplazamientos. 
Todo lo que se ha expresado anteriormente de forma numérica también se puede 
representar gráficamente en un sistema de ejes coordenados, Fig. 2.8, en el cual se colocan en 
abcisas las velocidades del vehículo y en ordenadas las tracciones,resultando la curva TO para 
plena potencia del motor y una reducción determinada de la caja de cambios. 
También se representa la curva Tu, que es una recta al ser independiente de las 
velocidades y puede cortar a la curva T 0 , o ser exterior T, u· 
Caso Tu V¡: Tu< To, deslizamiento 
Vz: Tu = To, > RT, v2 es válida 
V3 : Tu> T0 , To= RT, v3 es válida 
V4: Tu > To, To< RT, falta potencia luego V2 < v < V3 
Caso T, u v debe ser inferior a v3, pero está limitada inferiormente por el valor v5 de máx 
T 0 , porque a su izquierda hay inestabilidad del vehículo (falta reducción en la 
caja de cambios). 
Aplicando lo anterior si T O 5T u, 
siendo RT = W x (f R ± 10 x i), Tu = fT x W O x 1000 
como debe ser RT ::; T 0 , resulta RT 5 TU 
y sustituyendo W x (f R ± 10 x i) 5 fT x W O x 1000 
debe cumplirse: 
(R ± 10 X 5 1000 X ÍT X W D / W 
entonces: 
v = Pot x p ~ Pot x p Pot x p 
TD RT W X ( / R ± 10 X i ) 
V V~ v, V~ V 
Fig. 2.8 
Los fabricantes de tractores dan gráficas (Ver figura 2.9) para cada modelo de tractor 
donde elegida una marcha Fl, F2, F3, se obtienen la gama de velocidades y tracción disponible. 
Según sea el tipo de transmisión las curvas tendrán distintas formas. 
X 1 O' lb X 1 O' kg 
160 
o 
1 
60 
120 
1 
5 o 
100 
80 
60 
40 
30 
20 
40 
1 
i\ 
' 
r-.. 
-
! 
1 
1 
' 1 ' 
1 
Fl 
\ 
\ 
~\ 
"' 
2.10 
083E-1 
1 
1 
! i 1 
i i ! ! ! 
1 1 ! 
1 
F2 
~ I 
20 10 -~ F3 
¡ \ 1 l'-..rt-
' ! 
i 1 
! 1 
' ' 1 1 1 
1 1 1 
1 j ¡ 
1 í ! 
1 ! 1 
i i 
1 
: i 
! 
i : 
1 - 1 o 14 km/h 
...._ __ 2...._ __ 4~---'6----'-8- MPH 
6 10 12 
Velocidad 
Fig. 2.9 Tractor Komatsu D83E-1 con convertidor de par. 
2.6 CASOS PRACTICOS Y EJERCICIOS. 
EJERCICIO 2.1 
Una misma máquina de movimiento de tierras tiene en distintas obras diferente tracción 
utilizable. Dar una explicación, comentando una fórmula. 
Solución: 
La tracción utilizable viene dada por la expresión; 
siendo: 
- W = peso total que gravita sobre las ruedas motrices. 
- fT = coeficiente de tracción del terreno. 
El peso W será el mismo en las distintas obras, pero el coeficiente fT será diferente en función 
del terreno ea que opere la máquina. 
El producto W x fT podrá ser, pués, diferente al variar el fT del terreno en cada obra. 
( 
( 
( 
( 
í 
( 
( 
( 
( 
( 
( 
( 
( 
( 
2.11 
EJERCICIO 2.2 
Dos tractores iguales remolcan cargas máximas distintas. Dar una explicación 
comentando una fórmula. 
Solución: 
La tracción disponible puede calcularse aproximadamente para cada velocidad mediante 
la fórmula: 
T _ 367 x Potencia (KW) x Rendimiento 
0 - velocidad (Km/h) 
Si los dos tractores son iguales tendrán la misma potencia. Bastará, por lo tanto, que 
lleven velocidades distintas, para que varíe la tracción disponible y consecuentemente la carga 
máxima remolcada. 
EJERCICIO 2.3 
Un tractor de orugas de potencia al volante 300 H.P., se traslada en horizontal sobre 
tierra suelta a una velocidad de 3,6 Km/h. 
Calcular el peso teórico máx. del tractor para utilizar totalmente la potencia del motor. 
NOTA: HP=Horse Power, caballos de vapor. 1 HP = 0,736 KW , 367 x 0,736 = 270 HP 
Solución: 
Cálculo de la tracción disponible: 
T, = 270 x P (H.P.) x TJ 
D V (Km/h) 
270 X 300 X 0,75 
3,6 
(se supone una eficiencia del 75%) 
Cáculo de la tracción utili7..able: 
16.875 Kg. 
Para utifuar totalmente la potencia del motor, el peso teórico máximo del tractor será 
el que resulte de igualar la tracción disponible y la tracción utilizable: 
fT = 0,6 (Tabla 2.1) 
T0 = Tu - 16.875 = 0,6 x W - W = 16·875 = 28.125 Kg. 
96 
W = 28,125 t. 
2.12 
EJERCICIO 2.4 
Se supone un tractor de neumáticos de 4400 Kg. de peso, 100 H.P., la velocidad de 2,6 
Km/h, y velocidad máxima 26 Km/h. 
Suponiendo un coeficiente de eficiencia mecánica de 0,75, calcular la pendiente máxima 
que puede superar a la velocidad máxima en tierra húmeda. 
Solución: 
Las fuerzas negativas se tienen que vencer con el esfuerzo de tracción del vehículo. 
Cálculo de la tracción disponible: 
T = 270 x P (H.P.) x f1 
0 V (Km/h) 
Cálculo de la tracción requerida: 
270 X 100 X 0,75 = 779 Kg. 
26 
Rr = ( IR + 10 x i ) x W 
(fR en Kg/t, i en %, W en t) 
De la tabla 2.2 se obtiene fR = 100 Kg/t por tratarse de tierra húmeda. 
Rr = ( 100 + 10 x i ) x 4,4 
Supuesto que Tu = fT x W es mayor que RT para que haya adherencia entre ruedas y 
suelo, se deberá cumplir TO 2'. Rn por lo tanto: 
779 = ( }()() + 10 X i ) X 4,4 => i = 1,1% 
Comprobación de que se cumple Tu > T n· 
Tu = W x IT = Ir x W x cos a 
Como, i