Logo Studenta

13.2. Dinámica del sistema 13.2.1. Ecuación del movimiento Si aplicamos la ley de Newton, F = ma junto con la ley de Hooke, obtendremos que ma = ...

13.2. Dinámica del sistema
13.2.1. Ecuación del movimiento
Si aplicamos la ley de Newton, F = ma junto con la ley de Hooke, obtendremos
que
ma = −Kx ⇒ ma+Kx = 0.
Esta sencilla ecuación es, no obstante, algo más complicada de resolver que otras
anteriores, puesto que las magnitudes involucradas, a y x dependen La una de la
otra, concretamente como a = dx
/dt2

dx
/dt2
+
K
/m
x = 0
que constituye una ecuación diferencial, ya que involucra derivadas de funciones con
la propias funciones. Resolver esta ecuación está bastante más allá del ámbito de este
curso, pero aún aśı es fácil darse cuenta de que las funciones sin y cos van a tener
algo que ver, dado que son las únicas que al ser derivadas dos veces y sumadas
consigo mismas dan nulo. Manipulando algunos coeficientes en estas funciones y
operando se encuentra la solución más general a este movimiento, que es
x = A sin(ωt+ φ) (13.2)
y que por tanto constituye la ecuación de movimiento de un sistema que cumpla
la ley de Hooke, o bien de un movimiento armónico simple.
Significado de la ecuación
En esta ecuación A es la amplitud máxima que puede recorrer el móvil, ω es
la frecuencia angular de la oscilación, es decir, el número de “radianes” que da en
un segundo. Como parece que la palabra radián no tiene sentido para un muelle,
por ejemplo, quizás sea preferible pensar en la frecuencia del movimiento f = ω

es decir, el número de oscilaciones completas que da en un segundo, o bien tomar
T = 2π

el periodo de la oscilación, que será el tiempo que tarda nuestro sistema en
dar una oscilación completa.
Por último ¿qué será φ?. Notemos que, si tomamos t = 0 tendremos que en el
instante 0, el cuerpo que realiza un movimiento estaba en la posición x = sin(φ),
por lo que φ, parámetro al que se conoce con el nombre de fase, nos indica cuando
empieza el movimiento.
13.2.2. Periodicidad de la ecuación
Fijándose en la ecuación (13.2) se puede observar que, la existencia de una
función seno para describir este movimiento, nos va a llevar irremediablemente hacia
un movimiento de tipo periódico. Efectivamente, si tuviéramos un resorte perfecto,
este estaŕıa oscilando “eternamente” describiendo el mismo movimiento en cada
oscilación.
Para adivinar cada cuanto se repite el movimiento bastará igualar el argumento
del seno a 2π, pues como se sabe sin(2π + φ) = sin(φ). De esta manera tendremos
que el movimiento se repetirá, esto es, hará un periodo, cuando ωt = 2π, lo cual
supone que el periodo T será, como ya hab́ıamos dicho, T = 2π/ω.


Esta pregunta también está en el material:

fisica-general-libro-completo - Nestor Araujo Rentería
199 pag.
Todavía no tenemos respuestas

¿Sabes cómo responder a esa pregunta?

¡Crea una cuenta y ayuda a otros compartiendo tus conocimientos!


✏️ Responder

FlechasNegritoItálicoSubrayadaTachadoCitaCódigoLista numeradaLista con viñetasSuscritoSobreDisminuir la sangríaAumentar la sangríaColor de fuenteColor de fondoAlineaciónLimpiarInsertar el linkImagenFórmula

Para escribir su respuesta aquí, Ingresar o Crear una cuenta

User badge image

Otros materiales