Logo Studenta

PAUTA-PRUEBA2

¡Estudia con miles de materiales!

Vista previa del material en texto

UNIVERSIDAD DE ATACAMA
FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA
ESTADÍSTICA Y PROBABILIDAD
PAUTA SEGUNDA PRUEBA PARCIAL
Profesor: Hugo S. Salinas. Primer Semestre 2009
1. Resolver los siguientes problemas:
a) Se lanza un dado consecutivamente hasta que aparezca por primera vez un 1. Supongamos
que en el primer lanzamiento no hemos obtenido un 1. Calcular la probabilidad de que
sean necesarios más de tres lanzamientos para conseguir el 1 por primera vez.
Solución:
Sea X : número de lanzamientos hasta obtener un 1. Luego X es una variable aleatoria
(v.a.) Geométrica con p = 1/6, donde x = 1, 2, . . . , entonces:
P (X > 3|X > 1) = P ({X > 3} ∩ {X > 1})
P (X > 1)
=
P (X > 3)
P (X > 1)
=
1− P (X ≤ 3)
1− P (X ≤ 1))
=
1−
3∑
x=1
(5/6)x−1(1/6)
1− (5/6)0(1/6)
= 0.694
Es decir, el 69 % de las veces es necesario lanzar más de tres veces para conseguir el 1
cuando el primer lanzamiento no hemos obtenido un 1.
b) Un vendedor de enciclopedias sabe que la probabilidad de obtener un cliente en cada visita
es 0.3. Si este vendedor detiene sus ventas cuando logra vender la décima enciclopedia en
el d́ıa. ¿Cuál es la probabilidad de que, a lo largo de un mes de 30 d́ıas, no tenga que hacer
más de 40 visitas diarias?. (Asumir independencia entre las visitas diarias).
Solución:
Sea X : número de visitas diarias necesarias hasta vender 10 enciclopedias diariamente.
Luego X es una v.a. Binomial Negativa (Pascal) con p = 0.3 y r = 10, donde x = 10, 11, . . .,
entonces:
P (X < 40) = P (X = 10) + P (X = 11) + . . .+ P (X = 49)
=
39∑
x=11
P (X = x)
=
39∑
x=11
(
x− 1
10− 1
)
(0.7)x−10(0.3)10
SEGUNDA PRUEBA PARCIAL 1
c) En el juego del KINO se tienen 25 bolitas y se extraen 14 de ellas. Se sabe que el premio
menor (recuperar el dinero) se obtiene a los 10 aciertos. ¿Cuál es la probabilidad de obtener
algún premio en el juego (al menos se recupere el dinero).
Solución:
Sea X : número de aciertos que resultan al extraer 14 números (sin reposición) de un
total de 25. Luego X es una v.a. Hipergeométrica con N = 25, D = 14 y n = 14, donde
x = 0, 1, 2, . . . , 14, entonces:
P (X ≥ 10) = P (X = 10) + P (X = 11) + . . .+ P (X = 14)
=
14∑
x=10
(
14
x
)(
11
14−x
)(
25
14
)
=
(
14
10
)(
11
4
)
+
(
14
11
)(
11
3
)
+ . . .+
(
14
14
)(
11
0
)(
25
14
)
=
330330 + 60060 + 5005 + 154 + 1
4457400
= 0.0887
Es decir, existe un 8.87 % de posibilidad de ganar algún premio.
d) Del problema c). ¿Cuántos cartones debeŕıas jugar para aspirar a ganar algún premio?
Solución:
Sea Y : número de cartones a jugar hasta conseguir algún premio. Luego Y es una v.a.
Geométrica con p = 0.0887 donde y = 1, 2, 3, . . ., entonces:
E(Y ) =
1
p
=
1
0.0887
= 11.27
Es decir, se deben jugar 11 cartones aproximadamente.
e) Cierto banco ha comprobado que la probabilidad de que un cliente con fondos extienda
un cheque con fecha equivocada es de 0.001. En cambio, todo cliente sin fondos pone una
fecha errónea en sus cheques. El 90 % de los clientes del banco tienen fondos.
Si llegan 6 cheques con fecha equivocada, ¿cuál es la probabilidad que al menos uno de
estos haya sido emitido por un cliente con fondos?
Solución:
Para un cliente del banco, se obtiene:
P (fecha equivocada | con fondos) = 0.001
P (fecha correcta | con fondos) = 0.999
P (fecha equivocada | sin fondos) = 1
P (fecha correcta | sin fondos) = 0
P (con fondos) = 0.9
P (sin fondos) = 0.1
Sea Z : número de cheques equivocados emitidos por clientes con fondos, de un total de 6
cheques. Luego Z es una v.a. Binomial con n = 6 y p = P (con fondos | fecha equivocada).
Primero debemos calcular P (con fondos | fecha equivocada), en efecto:
P (con fondos | fecha equivocada) = P (con fondos )P (fecha equivocada | con fondos)
P ( fecha equivocada)
=
(0.9)(0.001)
(0.9)(0.001) + (0.1)(1)
= 0.0089
SEGUNDA PRUEBA PARCIAL 2
Por lo tanto:
P (Z ≥ 1) = 1− P (Z = 0)
= 1−
(
6
0
)
(0.0089)0(0.9911)6 = 0.052
Es decir, de los 6 cheques que llegan con fecha equivocada, existe un 5.2 % que al menos
uno de estos haya sido emitido por un cliente con fondos.
2. En un programa de TV se decide votar por la persona que quieres que abandone el concurso.
Se sabe que tienes una probabilidad del 20 % de que la ĺınea no esté ocupada. Supongamos
que cada llamada que realizas es independiente.
a) ¿Cuál es la probabilidad de que la primera llamada que entre sea la décima que realizas?
Solución:
Sea X : la ĺınea está ocupada hasta que la llamada entra por primera vez. Luego X es una
v.a. Geométrica con parámetro p = 0.2 donde x = 1, 2, . . ., entonces:
P (X = 9) = (1− 0.2)9(0.2) = 0.027
b) ¿Cuál es la probabilidad de que sea necesario llamar 10 veces para votar dos veces por el
concursante?
Solución:
Sea Y : la ĺınea está ocupada hasta que la llamada entra dos veces. Luego Y es una v.a.
Pascal (Binomial negativa) con paramétros p = 0.2 y r = 2 donde y = 2, 3, . . ., entonces:
P (Y = 8) =
(
8 + 2− 1
8
)
(0.8)8(0.2)2 =
(
9
8
)
(0.8)8(0.2)2 = 9(0.8)8(0.2)2 = 0.060
c) Supongamos que compras una tarjeta que permite realizar 15 llamadas telefónicas al con-
curso. Si agotas tus llamadas, ¿cuál es la probabilidad de votar al menos tres veces?
Solución:
Sea Z : número de llamadas exitosas. Luego Z es una v.a. Binomial con parámetros p = 0.2
y n = 15 donde z = 0, . . . , 15, entonces:
P (Z ≥ 3) = 1− P (Z ≤ 2)
= 1− [P (Z = 0) + P (Z = 1) + P (Z = 2)]
= 1−
(
15
0
)
(0.2)0(0.8)15 −
(
15
1
)
(0.2)1(0.8)14 −
(
15
2
)
(0.2)2(0.8)13
= 1− (0.8)15 − 15(0.2)(0.8)14 − 105(0.2)2(0.8)13 = 0.6019
d) La telefonista del programa de TV contesta en promedio 12 llamadas cada 15 minutos.
i. ¿Cuál es la probabilidad de que exactamente 10 llamadas sean recibidas en el periodo
de 15 minutos?.
Solución:
Cada 15 minutos el programa contesta λ = 12 llamadas en promedio. X es una v.a.
Poisson con λ = 12 donde x = 0, 1, . . ., entonces:
P (X = 10) =
1210e−12
10!
= 0.1048
SEGUNDA PRUEBA PARCIAL 3
ii. ¿Cuál es la probabilidad de que a lo más 5 llamadas sean recibidas por la telefonista
en 5 minutos?.
Solución:
En 15 minutos el programa contesta 12 llamadas, entonces en 5 minutos contesta 4
llamadas. Y es una v.a. Poisson con λ = 4, entonces:
P (Y ≤ 5) =
5∑
y=0
4ye−4
y!
= e−4
5∑
y=0
4y
y!
= e−4
[
1 + 4 +
16
2
+
64
26
+
256
24
+
1024
120
]
= e−4
643
15
= 0.7851
iii. ¿Cuántas llamadas se espera contestar durante el peŕıodo de una hora?
Solución:
Se espera contestar 48 llamadas en 1 hora.
e) Se sabe que durante el peŕıodo de una hora 100 personas intentaron comunicarse de las
cuales solamente 40 pudieron efectivamente votar por el concursante. Al extraer una mues-
tra aleatoria de tamaño 20 de los números registrados. ¿Cuál es la probabilidad de que
exactamente 8 llamadas seleccionadas hayan votado por el participante?
Solución:
X : número de llamadas que hacen la votación de entre 20 números registrados. X es una
v.a. Hipergeométrica con N = 100, D = 40 y n = 20 donde 0 ≤ x ≤ 20, entonces:
P (X = 8) =
(
40
8
)(
60
12
)(
100
20
) = 0.20078
3. La frecuencia de la radiación electromagnética emitida por un teléfono móvil sigue una distribu-
ción normal con media 1200 MHz y desviación estándar 300 MHz.
Sea X ∼ N(1200, 3002) y Z ∼ N(0, 1).
a) Calcular la probabilidad de que la frecuencia de la onda emitida sea superior a 1500 MHz.
Solución:
P (X > 1500) = P
(
Z >
1500− 1200
300
)
= P (Z > 1)
= 1− P (Z ≤ 1) = 1− 0.8413 = 0.1587
b) Calcular la probabilidad de que la frecuencia se mantenga entre 1000 y 1200 MHz.
Solución:
P (1000 < X < 1200) = P
(
1000− 1200
300
< Z < 0
)
= P
(
−2
3
< Z < 0
)
= P (−0.67 < Z < 0) = P (Z < 0)− P (Z < −0.67)
= P (Z < 0)− 1 + P (Z < 0.67) = 0.5− 1 + 0.7486 = 0.2486
SEGUNDA PRUEBA PARCIAL 4
c) Sabiendo que la frecuencia emitida es inferior a los 1600 MHz, calcular la probabilidad de
que se mantenga por encima de los 1000 MHz.
Solución:
Primero calculamos
P (X < 1600) = P
(
Z <
1600− 1200
300
)
= P
(
Z <
4
3
)
= P (Z < 1.33) = 0.9082P (X < 1000) = P
(
Z <
1000− 1200
300
)
= P (Z < −0.67) = 1−P (Z < 0.67) = 1−0.7486 = 0.2514
Entonces:
P (X > 100|X < 1600) = P ({X > 1000} ∩ {X < 1600})
P (X < 1600)
=
P (1000 < X < 1600)
P (X < 1600)
=
P (X < 1600)− P (X < 1000)
P (X < 1600)
=
0.9082− 0.2514
0.9082
=
0.6568
0.9082
= 0.7232
d) El 0.8 % de los teléfonos móviles presentan una frecuencia tan alta que afectan a radios,
televisores, computadoras, etc. Calcular la frecuencia a partir de la cual un teléfono inter-
fiere en otros aparatos eléctricos.
Solución:
P (X > a) = 0.008
P
(
Z >
a− 1200
300
)
= 0.008
1− P
(
Z ≤ a− 1200
300
)
= 0.008
P
(
Z ≤ a− 1200
300
)
= 0.992
Por tabla tenemos que a−1200
300
= 2.41, entonces a− 1200 = 723. Por lo tanto a = 1923.
4. La destiladora Concha y Toro produce entre 200 y 300 galones de vino diarios. La distribución
uniforme es la que mejor describe este proceso.
Sea X ∼ U(200, 300)
a) ¿Cuánto vino se produce al d́ıa en promedio?
Solución:
Si X ∼ U(200, 300) entonces E(X) = 200+300
2
= 250. Por lo tanto se producen 250 galones
al d́ıa en promedio.
b) ¿Cuál es la cantidad de variabilidad en el número de galones de vino producidos de un d́ıa
a otro?
Solución:
V arX = (300−200)
2
12
= 833.33 entonces D.E. =
√
833.33 = 28.87. Por lo tanto hay una
diferencia de 28.87 galones diarios con respecto a la producción media.
SEGUNDA PRUEBA PARCIAL 5
c) ¿En qué porcentaje de los d́ıas puede esperarse que la producción caiga entre 220 y 270
galones?
Solución:
P (220 < X < 270) =
1
100
∫ 270
220
dt =
270− 220
100
=
50
100
= 0.5
El 50 % de las veces la producción diaria cae entre 220 y 270 galones.
d) ¿Cuál es la probabilidad de que la producción de mañana sea mayor que 280 galones?
Solución:
P (X > 280) =
1
100
∫ 300
280
dt =
300− 280
100
=
20
100
= 0.2
Hay un 20 % de posibilidad que la producción de mañana sea mayor que 280 galones.
SEGUNDA PRUEBA PARCIAL 6

Continuar navegando

Materiales relacionados

3 pag.
Ejercicios de Probabilidad - ALBERT (2)

User badge image

Desafío México Veintitrés

11 pag.
Ejercicios Estadistica

User badge image

Estudiando Ingenieria