Logo Studenta

funcionamiento motor electromagnetico

¡Estudia con miles de materiales!

Vista previa del material en texto

Equipo 5: investigación magnetismo y electricidad, funcionamiento de un motor electromagnético de dos polos por chavatrocas.
Introducción: 
Los motores electromagnéticos de dos polos también conocidos como motores de corriente continua funcionan gracias a la interacción entre una corriente eléctrica y un campo magnético que se forma entre los dos polos opuestos de un imán, un motor de estas características aprovecha este tipo de fuerza para hacer girar un eje transformando así la energía eléctrica en movimiento
Componentes de un motor de dos polos:
Los dos componentes básicos del motor son el rotor y el estator. 
El rotor es una pieza giratoria, un electro imán móvil con varios salientes laterales que llevan cada uno a su alrededor un bobinado por el que pasa la corriente eléctrica, el estator está situado alrededor del rotor que es un electro imán fijo cubierto por un aislante.
Al igual que el rotor, dispone de una serie de salientes con bobinados eléctricos por los que circula la corriente.
Funcionamiento físico.
La “Ley de la Fuerza de Lorentz”, descubierta por el físico-matemático holandés Hendrik Antoon Lorentz (1853-1928), postula que cuando una partícula cargada eléctricamente se mueve dentro de un campo magnético experimenta una fuerza perpendicular a la dirección de ese movimiento y perpendicular, a su vez, a la dirección del flujo del campo magnético.
Ley de la Fuerza de Lorentz
Cuando una carga eléctrica en movimiento, se desplaza en una zona donde existe un campo magnético, además de los efectos regidos por la ley de Coulomb, se ve sometida a la acción de una fuerza. Supongamos que una carga Q, que se desplaza a una velocidad v, en el interior de un campo magnético B. Este campo genera que aparezca una fuerza F, que actúa sobre la carga Q, de manera que podemos evaluar dicha fuerza por la expresión:
Como la fuerza es el resultado de un producto vectorial, será perpendicular a los factores, es decir, a la velocidad y al campo magnético. Al ser perpendicular a la velocidad de la carga, también lo es a su trayectoria, por lo cuál dicha fuerza no realiza trabajo sobre la carga, lo que supone que no hay cambio de energía cinética, o lo que es lo mismo, no cambia el módulo de la velocidad. La única acción que se origina, cuando la partícula entra en el campo magnético, es una variación de la dirección de la velocidad, manteniéndose constante el módulo.
Este cambio de dirección es debido a que la fuerza que aparece va a actuar como fuerza centrípeta, originando un movimiento de rotación de la partícula en el interior del campo magnético. En el gráfico que vemos al lado, observamos la fuerza producida, que es la que originará ese cambio de dirección. B representa al campo, cuyo sentido es hacia el interior de la página. F es la fuerza, que, como vemos, tiene dirección radial, es decir, actúa como fuerza central y, v es la velocidad de la carga.
Existe una regla muy sencilla para obtener la dirección, obvia por ser el resultado de un producto vectorial, y el sentido de la fuerza que actúa sobre la carga. Se conoce con el nombre de la "Regla de la mano izquierda". Tal y como vemos en la figura, si colocamos los dedos de la mano izquierda pulgar, índice y medio, abiertos y perpendiculares entre sí, cada uno de ellos señala uno de los vectores:
El principio de funcionamiento del motor eléctrico se basa en la “Ley de la Fuerza de Lorentz”. Si aplicamos la “Regla de la mano izquierda” basada en esta Ley, podemos determinar en qué sentido girará el rotor del motor. 
	
	
	
En la parte izquierda de esta ilustración se pueden observar dos polos magnéticos pertenecientes a un imán permanente (polo norte “N” y polo sur “S”). Las flechas de color violeta representan la dirección del flujo del campo magnético del imán permanente, moviéndose del polo norte al polo sur. Entre los dos polos magnéticos se ha colocado una especie de trapecio compuesto por un simple alambre de cobre suspendido de un aditamento de color negro (no conductor de la corriente), que le permite al alambre balancearse libremente. Como todavía el alambre no se ha conectado a la corriente eléctrica no se encuentra energizado, permaneciendo en posición de reposo suspendido entre los dos polos del imán.
En la parte central de la ilustración se ha conectado una pila o batería a los dos extremos del alambre de cobre para energizarlo. La flecha de color rojo nos indica el sentido convencional en que circula la corriente eléctrica a través del alambre (suministrada por la batería), mientras la flecha verde indica la dirección en la que será rechazado o empujado el alambre, o sea, hacia la izquierda obedeciendo a la “Ley de la fuerza de Lorentz”. La dirección de ese movimiento se puede determinar aplicando la “Regla de la Mano Izquierda”. Esa posición que adquiere el alambre la mantendrá así durante todo el tiempo que se encuentre energizado o conectado a la pila o batería, o hasta que se invierta la polaridad de ésta en el circuito.
En la parte derecha de la misma ilustración se puede comprobar que al variar la posición de la pila y, por tanto, la polaridad de la conexión del alambre al circuito, éste se mueve hacia la derecha. Esa posición la mantendrá también durante todo el tiempo que se encuentre conectado a la pila o batería, o hasta que se invierta de nuevo la polaridad en el circuito y retorne otra vez a la posición izquierda. En caso que desconectemos la pila o batería del circuito, el alambre retornará a la posición de reposo que mantenía al principio antes de ser energizado.

Continuar navegando

Materiales relacionados

33 pag.
08_electromag

SIN SIGLA

User badge image

angel martelo

28 pag.
174 pag.
polilibro

Valle De Huejucar

User badge image

Kevin Morales