Logo Studenta

100problemas01-140703094633-phpapp02 (1)-1

¡Este material tiene más páginas!

Vista previa del material en texto

MARAVILLOSOS 
PROBLEMAS DE 
MATEMÁTICAS 
 
Libro 1 
 
 
 
 
http://matemelga.wordpress.com/ 
 
Si A , B , C y D son cuatro vértices consecutivos de un polígono regular tal que 
ADACAB
111 += , 
¿cuántos lados tiene este polígono? 
 
SOLUCIÓN 
Tengamos en cuenta las siguientes convenciones: 
• n es número de lados del polígono 
• 0≠=
n
πα es la mitad del ángulo central, y 
NOPMONAOM ===α 
• El radio del polígono es 1 
• O es el centro del polígono regular 
• M , N y P son los puntos medios del los 
segmentos respectivos AB , AC y AD 
• Los triángulos OMA , ONA y OPA son 
rectángulos, respectivamente, en M , N y P (véanse las mediatrices de los segmentos del 
enunciado, señaladas por líneas de puntos) 
 
En estas condiciones, 
• en el triángulo rectángulo OMA se verifica que αα senABsenAM .2=⇒= 
• en el triángulo rectángulo ONA se verifica que αα 2.22 senACsenAN =⇒= 
• en el triángulo rectángulo OPA se verifica que αα 3.23 senADsenAP =⇒= 
 
Por lo tanto, 
⇒+=⇒+=⇒+=
αααααα 3
1
2
11
3.2
1
2.2
1
.2
1111
sensensensensensenADACAB
 
⇒=−⇒=−⇒
ααα
αα
ααα 2
1
3.
3
2
1
3
11
sensensen
sensen
sensensen
⇒




 −+=−=⇒
2
.
2
cos.2
2
1
3.
.2cos.2 ba
sen
ba
bsenasenpues
sensensen
sen
ααα
αα
⇒=⇒≠= αααα
αα
α
32cos.2.2)0(
2
1
3
2cos.2
sensensenpues
sensen
 
( )aasenasenpuessensen cos..2234 ==⇒ αα , lo que quiere decir, en el contexto del problema, que 
 7
7
734 =⇒==⇒==+ n
n
ππαπααα 
El polígono tiene 7 lados 
 
Dos matemáticos se encuentran en la calle después de mucho tiempo sin verse. 
− ¡Cuánto tiempo sin verte! 
− ¡Vaya!, parece que fue ayer. 
− Y qué, ¿te casaste? 
− Si, tengo tres hijas preciosas. 
− ¿Qué edad tienen? 
− Pues no te voy a decir la edad que tiene cada una, pero sí te diré que el producto de sus 
edades es 36 y que la suma es el número de la casa de enfrente. 
El amigo mira el número del portal y saca papel y lápiz. Hace unos cálculos y al cabo de unos 
segundos exclama: 
− Me faltan datos. 
− Sí, claro. La mayor toca el piano. 
El amigo da inmediatamente la respuesta. ¿Serás tú capaz de darla tú también? 
 
SOLUCIÓN 
Escribimos todos los productos de tres números cuyo resultado sea 36: 
• 1 x 1 x 36 = 36 � El portal debería ser el 38 (=1+1+36) 
• 1 x 2 x 18 = 36 � El portal debería ser el 21 (=1+2+18) 
• 1 x 3 x 12 = 36 � El portal debería ser el 15 (=1+3+12) 
• 1 x 4 x 9 = 36 � El portal debería ser el 14 (=1+4+9) 
• 1 x 6 x 6 = 36 � El portal debería ser el 13 (=1+6+6) 
• 2 x 2 x 9 = 36 � El portal debería ser el 13 (=2+2+9) 
• 2 x 3 x 6 = 36 � El portal debería ser el 11 (=2+3+6) 
• 3 x 3 x 4 = 36 � El portal debería ser el 10 (=3+3+4) 
 
La duda del amigo (falta de un dato) sólo puede deberse a que el número de la casa que ve no muestra de 
manera unívoca el resultado, por lo que el portal debe ser el 13, al haber dos conjuntos de edades que 
determinan dicho número; 1, 6 y 6, y 2, 2 y 9 y existir, por tanto, una ambigüedad. 
La última afirmación del padre señala que existe una niña mayor que las otras, por lo que 
Las edades de las hijas son 2, 2 y 9 años 
 
Hace tres siglos, lejanas praderas del Oeste americano eran habitadas por diferentes tribus de 
indios como los SHYS, los BADMILKS y los HOTEGGS. 
 
Los SHYS eran grandes guerreros y dotados de una increíble inteligencia, 
equiparable a su prudencia. Sus defectos eran muy notorios: muy tímidos 
y, monógamos acérrimos (se casaban nada más superar la pubertad), 
muy celosos, hasta tal punto que si se enteraban de que su mujer les 
había engañado, al día siguiente de saberlo, ¡LA MATABAN! 
 
Los BADMILKS se caracterizaban por las reivindicaciones permanentes 
sobre una parte del territorio ocupado por los SHYS: habían organizado 
todos los domingos manifestaciones reivindicativas cerca del campamento de éstos que 
degeneraban, indefectiblemente, en batallas campales en las que, casi nunca, llegaba la sangre 
al río. 
 
Hasta tal punto llegó el mosqueo de los SHYS que, un sábado al amanecer, se encaminaron 
todos sus guerreros hacia el territorio de los BADMILKS a fin de dar a esta tribu un escarmiento 
tal que les dejase sin ganas de seguir con la monserga dominical. Sólo quedaron en su 
campamento los ancianos y los niños, además de las mujeres de los guerreros. 
 
No contaron los SHYS con que una avanzadilla de HOTEGGS, famosos en todos aquellos confines 
por las notables dosis de seducción que ejercían sobre las mujeres, llegase a mediodía de ese 
funesto sábado a su campamento. 
 
Para ser breve, diré que hubo allí unos cuántos líos de faldas entre las SHYS casadas y los 
atractivos HOTEGGS y que, al atardecer, dejaron unas cuantas caras risueñas y cuerpos relajados 
en el campamento. Aunque no todo fueron alegrías: un venerable anciano observó TODO lo que 
pasó allí, quedando escandalizado. 
 
Al llegar los guerreros, esa misma noche, de su victoriosa escaramuza contra los BADMILKS, el 
anciano decidió inmediatamente darles a conocer la gran desgracia con suma discreción: a todos 
y cada uno de ellos les entregó, sin articular palabra, una lista en la que se encontraban los 
nombres de todas y cada una de las "alegres" mujeres excepto, en cada caso y si fuera una de 
ellas, la del receptor de la lista. 
 
Los guerreros SHYS entendieron el mensaje y uno de ellos, GRAND-BULL, recogió su lista, que 
contenía cuatro nombres, y se sentó inmediatamente en la entrada de su tienda cavilando sobre 
si había sido engañado o no. 
 
Antes de la medianoche del día de autos, ¡GRAND-BULL DEDUJO CÓMO Y CUÁNDO SABRÍA SI SU 
MUJER LE HABÍA ENGAÑADO O NO Y, ADEMÁS, DETERMINÓ EL DÍA EN QUE, EN CASO DE SER 
UNA MUJER INFIEL, TENDRÍA QUE MATARLA! 
 
Postdata: Así me contaron la historia y así os la transmito. Le he dado vueltas durante mucho tiempo y me 
he rendido: no sé cómo, aún siendo tan inteligente, pudo deducir GRAND-BULL todo eso. 
SOLUCIÓN 
Grand-Bull recibe una lista de cuatro nombres. Si su mujer le ha engañado habrá listas de 5 nombres 
recibidas por los no engañados. 
Si no le ha engañado, habrá listas de 3 y 4 nombres: 3 para los engañados y 4 para los no engañados. 
Grand-Bull se pone en ‘lo mejor’ (su mujer no le ha engañado) y, por tanto, en la situación (hipotética) de 
un indio que haya recibido una lista de 3 nombres. Al sólo conocer esa lista este indio razonará de manera 
idéntica a Grand-Bull, por lo que supondrá que puede haber listas de 2 y 3 nombres si su mujer no le ha 
engañado y de 3 y 4 si le ha engañado. 
Y siguiendo el mismo razonamiento se llegará a pensar en la posibilidad de que haya listas de 1 y 2 
nombres, pues todos los indios han recibido lista. 
Si alguien recibiese una lista con un solo nombre deduciría el mismo domingo que su mujer lo había 
engañado, por lo que el lunes la mataría. 
Si no hubiera ninguna muerte el lunes no habría listas de 1, por lo que ese día sabría, quien tuviera una 
lista con 2, que su mujer le engañaba y el martes la mataría. 
Sucesivamente y al no haber muertes ese día, quien tuviera una lista con 3 personas mataría el miércoles a 
su mujer si ésta le hubiera sido infiel. 
Grand-Bull, pues, esperó al miércoles. Ese día supo si su mujer le engañaba o no. Si no hubo muertes se 
convenció de que había listas de 4 y de 5 personas y que su mujer le fue infiel, por lo que mató el jueves a 
su mujer. 
 
Grand-Bull supo el miércoles si su mujer le había 
engañado o no y, en caso de infidelidad (si no hubieran 
habido muertes dicho miércoles), la mató el jueves 
 
 
La distancia por ferrocarril entre Madrid y A Coruña es de 600 kilómetros. Un tren sale de Madrid hacia A 
Coruña con una velocidad de 160 km/h, y, 
simultáneamente, otro de A Coruña a Madrid a 140 
km/h. 
En ese mismo momento un halcón peregrino 
(velocísimo), situado en la locomotora del primer tren, 
comienza a volar siguiendo la vía férrea hacia A 
Coruña a una velocidad constante de 175 km/h. Al 
cabo de cierto tiempo llega al tren que viene en 
sentidocontrario, toca la locomotora y, sin perder 
tiempo, se vuelve hacia el primer tren repitiendo este 
vaivén hasta que los trenes se encuentran y, en el 
inevitable choque, aplastan al halcón, que muere. 
 
¿Cuáles son los kilómetros recorridos por el halcón desde que comienza el trayecto hasta que muere? 
 
 
SOLUCIÓN 
Según la velocidad acumulada de los dos trenes (160 km/h + 140 km/h = 300 km/h), al cabo de dos horas 
chocan, pues uno ha recorrido 320 km y el otro 280 km. 
Esto quiere decir que el halcón ha estado volando durante 2 horas a una velocidad de 175 km/h, por lo que 
habrá recorrido exactamente 350 km. 
 
El halcón ha recorrido 350 km 
 
 
Con operaciones matemáticas, hay que conseguir realizar todos los cálculos con exactamente 
tres cifras iguales (de 1 a 9) que tengan, como resultado, 6 (Por ejemplo, con el 2: 2+2+2=6) 
 
SOLUCIÓN 
• 6)!111( =++ 
• 6222 =++ 
• 6333 =−× 
• 6444 =−+ 
• 6555 =÷+ 
• 6666 =−+ 
• 6777 =÷− 
• 6888 =+− 
• 6999 =−× 
 
En la pared interior de un vaso cilíndrico, de 10 cm de diámetro y 20 cm de 
altura, hay una gota de miel situada a 3 cm del borde del recipiente. 
En la pared exterior, y en el punto exactamente opuesto a la gota, se 
encuentra una mosca. (Ese punto es tal que el segmento que forma con la gota 
tiene de punto medio el del segmento-eje del vaso cilíndrico) 
 
¿Cuál es el camino más corto que puede seguir la mosca para llegar a la gota 
de miel?, ¿qué longitud debe recorrer la mosca? 
 
 
 
 
SOLUCIÓN 
Evidentemente, al estar el exterior del vaso, la mosca deberá llegar al borde para poder entrar al interior y 
llegar a la gota. Desplegando la superficie lateral del cilindro se observa la ruta más corta: 
El camino más corto (en azul) es de la misma longitud que el segmento MG' , siendo 'G el punto 
simétrico de la gota de miel G respecto del lado superior de la superficie. 
Se construye el triángulo rectángulo formado por los puntos 'G , M (mosca) y P (punto de intersección del 
lado derecho de la superficie y de la recta paralela al lado superior). 
La mitad de la anchura de la superficie es cmrPM ππ 5== y cmPG 20'= 
Por tanto, por el teorema de Pitágoras, se obtiene que el camino mide ( ) cmx 43,25205 22 =+= π 
 
El camino más corto que debe recorrer la mosca hasta la 
gota de miel mide 25,43 cm 
 
 
Dos nómadas se detuvieron en un oasis a descansar y reponer 
fuerzas después de una larga travesía por el desierto. 
Cuando iban a ponerse a comer se les presentó un peregrino 
hambriento y sin provisiones. Los nómadas, solidarios, 
distribuyeron equitativamente entre los tres sus exiguos 
alimentos. 
El primero llevaba 5 panes y el otro, 3. El peregrino, 
agradecido por su hospitalidad, les recompensó con 8 
monedas de plata. ¿Cómo se las debieron repartir los dos nómadas de manera justa? 
 
SOLUCIÓN 
Al repartirse los 8 panes, cada uno comió 
3
8
 de los panes. 
El primer nómada aportó 5 panes, de los cuales se comió 
3
8
 y dio al peregrino 
3
7
3
8
5 =− 
El segundo nómada aportó 3 panes, de los cuales se comió 
3
8
 y dio al peregrino 
3
1
3
8
3 =− 
La conclusión que se obtiene es que el peregrino comió 7 veces más pan del primer nómada que 
del segundo por lo que, para repartirse justamente las monedas del peregrino, 
 
El primer nómada toma 7 monedas 
y el segundo nómada 1 moneda 
 
Dado el sistema 





=++
=++
=++
15.
35.
8.
zyzy
zxzx
yxyx
, hallar zyxzyx ..+++ si 0,, >zyx 
 
SOLUCIÓN 
Los tres términos independientes son cuadrados menos una unidad, lo que da una idea de por 
donde se puede continuar: 
( )( )
( )( )
( )( )
( ) ( )( )
( )( ) ( )
( )( )( )
⇒






=+++
=+++
=+++
⇒





=++
=++
=++
⇒





=+++
=+++
=+++
⇒





=++
=++
=++
5761.1.1
1441.1.1
3241.1.1
161.1
361.1
91.1
161.
361.
91.
15.
35.
8.
2
2
2
zyx
zyx
zyx
zy
zx
yx
zyzy
zxzx
yxyx
zyzy
zxzx
yxyx
 
( )
( )
( )
36..
7
1
2
7
81
21
2
9
1
64
9
576
1
4
36
144
1
4
81
16
324
1
2
2
2
=+++⇒







=
=
=
⇒







=+
=+
=+
⇒









==+
==+
==+
⇒ zyxzyx
z
y
x
z
y
x
z
y
x
 
 
x+y+z+x.y.z=36 
 
Reconstruir la división exacta siguiente, averiguando todas las cifras que intervienen en ella: 
 
 
SOLUCIÓN 
Si nos fijamos en el desarrollo de la división, observamos que, en dos casos, se 
‘bajan’ dos cifras del dividendo, por lo que las segunda y cuarta cifras del 
cociente serán iguales a cero 
Por otro lado, la primera cifra del dividendo debe ser 1. Tenemos entonces 
 
Al multiplicar el divisor (de tres cifras) por 8 obtenemos un número de tres 
cifras, por lo que la primera cifra del divisor debe ser un 1. Además, en la 
primera resta que se produce en la división se obtiene un número de dos 
cifras, por lo que el minuendo deberá ser 10xx y el sustraendo 9xx, y lo mismo 
pasa en la siguiente resta 
 
Evidentemente, la segunda cifra del divisor debe ser un 2, la tercera del 
dividendo un 0 y la segunda del primer sustraendo un 9… y en la segunda resta 
igual, por lo que la quinta cifra del dividendo es un 0 
 
 
 
Está claro ya que la primera cifra del cociente es un 8 y la última del divisor es 
un 4, la cuarta del dividendo es un 2 (así como la tercera del primer y segundo 
sustraendos) y la primera de la segunda resta es un 1 (igual que la primera del 
último sustraendo) 
 
 
Por fin, al tener el último sustraendo cuatro cifras, es inmediato deducir que la última cifra del 
cociente es un 9 completándose entonces, al saber divisor y cociente, el resto de dígitos de la 
división 
 
 
 
 
 
 
Tengo tres dados con letras diferentes. Al tirar los dados puedo formar 
palabras tales como OSA, FIN, VID, REY, ATE, SOL, MIA, ESA, CAE, GOL, PIO, 
SUR, pero no puedo formar palabras tales como DIA, VOY y RIN. 
¿Cuáles son las letras de cada uno de los dados? 
 
 
SOLUCIÓN 
Numeramos los dados 1, 2 y 3 
Al poderse escribir ATE, ESA, CAE, OSA, SOL y GOL, los dados tienes las letras: 
1: A,L 2: T,S,C,G 3: E,O 
Como se puede escribir PIO y DIA, 
1: A,L 2: T,S,C,G,I 3: E,O 
Al no poderse escribir DIA, pero sí VID y MIA, 
1: A,L,D 2: T,S,C,G,I 3: E,O,V,M 
Retomamos PIO: 
1: A,L,D ,P 2: T,S,C,G,I 3: E,O,V,M 
De SUR y FIN deducimos que U, R, F y N completan los dados 1 y 3, por lo que Y completa el 2: 
1: A,L,D ,P 2: T,S,C,G,I,Y 3: E,O,V,M 
De REY y SUR obtenemos: 
1: A,L,D ,P,R 2: T,S,C,G,I,Y 3: E,O,V,M,U 
Y al no poderse escribir RIN y sí FIN, 
1: A,L,D ,P,R,N 2: T,S,C,G,I,Y 3: E,O,V,M,U,F 
 
 
Los dados tienen las caras ADLNPR, CGISTY, EFMOUV 
 
En una biblioteca, dispuestos de forma usual, hay 
cuatro tomos de una enciclopedia teniendo cada 
tomo un espesor de 4 centímetros, tapas incluidas. El 
espesor de cada tapa es de 0,25 centímetros. 
Una polilla comienza a devorar lo que encuentra a 
partir de la primera página del primer tomo y se abre 
camino en dirección a la última página del cuarto 
tomo, que también se come. 
Suponiendo que tarda un día en recorrer medio centímetro, ¿cuántos días tardará en realizar su 
destructora labor? 
 
 
SOLUCIÓN 
Teniendo en cuenta la disposición habitual de los tomos, después de la primera página del primer tomo se 
encuentra la tapa y, a continuación, el segundo y tercer tomos, la tapa del cuarto tomo y la última página 
de dicho tomo. 
En total devora 0,25+4+4+0,25 = 8,50 centímetros, además de la última página. 
En resumen, 8,50:0,50 = 17 
 
La polilla tarda 17 días 
 
Tres marineros y un mono llegan, tras un naufragio, a una isla 
desierta. Durante todo el día se dedican a recoger cocos, con los que 
forman un montón común. Al llegar la noche, cansados por el trabajo 
hecho, se van a dormir dejando para el día siguiente el reparto de los 
cocos. 
Durante la noche uno de los marineros, desconfiando de los otros dos, 
decide hacerse con su parte, procediendo a formar tres montones 
iguales y guardando unode ellos. Como al hacerlo le sobra un coco, se 
lo da al mono. 
El segundo marinero despierta más tarde y, teniendo la misma idea, hace lo mismo con los cocos que 
dejó el primero. Al hacerlo también le sobra un coco y se lo da al mono. 
Casi al amanecer se despierta el tercer marinero y hace lo mismo que sus compañeros con los cocos que 
aún quedan en el montón. A éste también le sobra un coco que se lo da al mono. 
Por la mañana, aunque el montón de cocos está reducido, los tres marineros se sienten igualmente 
culpables y no dicen nada sobre lo que han hecho durante la noche. Proceden al reparto de los cocos, les 
sobra uno y se lo dan al mono. 
¿Cuál es la mínima cantidad de cocos que había en el montón inicial?, ¿cuántos cocos se lleva cada uno 
de los marineros? 
 
SOLUCIÓN 
Llamemos N a la cantidad inicial de cocos y A , B , C a los que cogen, inicial y sucesivamente, los 
tres marineros. 
El primer marinero hace los montones de A cocos, se lleva A cocos y da uno al mono: 13 += AN 
El segundo marinero, con el resto, hace lo propio con los restantes: 131 +=−− BAN 
El tercer marinero, con el resto, hace lo propio con los restantes: 1311 +=−−−− CBAN 
Al final, se hacen tres montones de D cocos y sobra uno, que se lo dan al mono: 
13111 +=−−−−−− DCBAN 
Con estas cuatro ecuaciones, obtenemos 
 De la primera y la segunda, 132 += BA 
 De ellas y la tercera, 132 += CB 
 Y de todas las anteriores y la última, 132 += DC 
Despejando sucesivamente llegamos a ⇒
+=⇒+=⇒+=
8
1927
4
59
2
13 D
A
D
B
D
C 
8
6581 +=⇒ DN , usando también la ecuación inicial. 
De ahí, 
8
1
810
8
6581 +++=+= DDDN y, para que este valor sea entero y mínimo, se deduce que 
792617117 =⇒=⇒=⇒=⇒= NABCD 
Es muy sencillo recrear los repartos y hallar la cantidad de cocos que se llevó cada uno. 
 
Inicialmente había 79 cocos y los marineros se llevaron, 
respectivamente, 33, 24 y 18 cocos. El mono se llevó 4 
 
Si una cuerda se corta en trozos de 20 centímetros, sobra un trozo de 
15 centímetros. 
Si la longitud de la cuerda hubiese sido el triple de la original, ¿habría 
sobrado algún trozo? 
 
 
 
SOLUCIÓN 
Llamamos x a los trozos de 20 centimetros en los que se corta la cuerda. La cuerda medirá entonces 
20x+15… Si triplicamos su longitud medirá ahora 3.(20x+15) = 60x+45 = 20.3x+20.2+5 = 20.(3x+2)+5, 
por lo que 
 
Sobrará un trozo de 5 centímetros 
 
 
Un cazador camina 3 kilómetros hacia el sur, después 1 kilómetro hacia el este y ve 
un oso. Asustado, corre 3 kilómetros hacia el norte volviendo al punto de partida. 
¿De qué color es el oso? 
 
 
SOLUCIÓN 
La trayectoria que lleva el cazador solo puede realizarse en el Polo Norte o en el Polo Sur, y en éste no hay 
osos. Está, por tanto, en el Polo Norte y 
 
El oso es de color blanco 
 
 
Una cuerda, de 20 metros de longitud, tiene sus extremos atados a la parte 
superior de dos postes de 12 metros de altura cada uno. Si la cuerda cuelga a 2 
metros del suelo, ¿cuál es la separación entre ambos postes? 
 
 
SOLUCIÓN 
Con los datos que se dan, solo puede producirse esta situación: 
 
Los postes están juntos 
 
 
Un tren sale de Madrid hacia Barcelona a 120 kilómetros por hora. 
Simultáneamente, otro tren sale de Barcelona a Madrid a 160 kilómetros por 
hora. En el preciso instante en que se encuentren, ¿cuál estará más cerca de 
Barcelona? 
 
 
SOLUCIÓN 
Si se entiende bien lo que dice el enunciado, 
 
Los trenes estarán a la misma distancia de Barcelona 
 
 
Un barco, fondeado en un puerto, tiene desplegada una escala para 
poder desembarcar en los botes. La escala, desde la cubierta hasta el 
agua, tiene 22 escalones de 20 cm. de altura cada uno. Si la marea 
sube a razón de 10 cm. por hora, ¿cuántos escalones cubrirá al cabo 
de 10 horas? 
 
SOLUCIÓN 
La marea sube y con ella se lleva al barco hacia arriba también, por lo que 
 
El agua no cubrirá ningún escalón 
 
 
Una araña teje su tela en el marco de una ventana, duplicando cada día la superficie 
hecha hasta entonces, y tarda 30 días en cubrir el hueco de la ventana. Si en vez de una 
araña fueran dos, al mismo ritmo de trabajo, ¿cuánto tiempo tardarían en cubrir dicho 
hueco? 
 
SOLUCIÓN 
El día 29 la araña llena la mitad de la superficie, por lo que dos arañas cubrirían la totalidad. Por tanto 
 
Dos arañas tardarán 29 días 
 
 
Un caracol sube verticalmente por una tapia de 10 metros de altura. Durante el 
día sube 2 metros, y durante la noche resbala, retrocediendo un metro. 
¿Cuántos días tardará en subir la tapia? 
 
SOLUCIÓN 
Todos los días subirá 2 metros y bajará por la noche 1 metro hasta el noveno día. Empezará con 8 metros 
subidos y, al subir otros 2, llegará a la cima de la tapia y habrá acabado su “escalada”. 
 
La tapia la subirá en 9 días 
 
 
Con el número 2 y la raiz cuadrada podemos construir recursivamente estos bonitos números: 
...2.2.2.2.2=a y ...22222 +++++=b 
¿Cuál es el mayor de los dos?, ¿cuánto valen cada uno de ellos? 
 
 
SOLUCIÓN 
aaa .2...2.2.2.2.2...2.2.2.2.2 2 ==⇒= , y como 20 =⇒≠ aa 
Por otro lado, ⇒+=+++++=⇒+++++= bbb 2...22222...22222 2 
022 =−−⇒ bb , cuyas soluciones son 1− y 2 , y como 20 =⇒> bb … y la conclusión es que 
 
Los dos números son iguales y su valor es 2 
 
 
Tenemos 9 sacos que contienen bolas de 10 gramos cada una y un saco 
que contiene bolas de 9 gramos. No se sabe cuál es este último saco y 
se trata de determinarlo mediante una sola pesada en una balanza. 
¿Cómo se hará? 
 
 
SOLUCIÓN 
Se colocan en la balanza 1 bola del primer saco, dos del segundo, 3 del tercero y, así, 
sucesivamente hasta poner 10 del décimo. Se pesan y se observa el resultado. 
Ese valor resultante nos dirá los gramos que faltan hasta llegar a 900, que serían los hipotéticos 
que resultarían si todos los sacos tuvieran bolas de 10 gramos. 
Ese número nos da la cantidad de bolas de 9 gramos pesadas y, por tanto, el número del saco que 
las contiene. 
 
El saco es el indicado por el número de gramos que 
faltan, en la pesada, para llegar a 900 
 
En un huerto había 49 árboles dispuestos como se ve en la figura adjunta. 
Al hortelano le pareció que había demasiados árboles y quiso despejar el 
huerto, cortando los que sobraban, para plantar mejor unos cuadros de 
flores. 
Llamó a un peón y le dijo: deja nada más que 5 filas de 4 árboles cada una. 
Los demás árboles, córtalos y quédate con la leña. 
Cuando terminó, salió el hortelano y miró el trabajo. ¡El huerto estaba casi 
arrasado!. En vez de 20 árboles, el peón sólo había dejado 10 y había 
cortado 39. 
¿Cómo había cortado los árboles el peón? 
 
 
SOLUCIÓN 
 
 
 
SOLUCIÓN 
Estudiemos el problema realizando un esquema. 
t es el tiempo que tardarían en juntarse los barcos en 
el punto A, al poner los piratas el rumbo adecuado 
para alcanzarlos lo más rápidamente posible. 
El triángulo rectángulo AGP nos dará, por el teorema 
de Pitágoras, ese tiempo: 
horasttt 29894,0
71,100
9
)20(3)3,17( 222 ==⇒=+
 y, por tanto, millasAP 9788,529894,020 =×= , 
distancia que recorrería el barco pirata. 
Cuando estén a una milla de distancia podrán disparar los cañones los piratas. Y eso sucederá 
cuando estén ambos en las posiciones B y C. 
Como los triángulos ABC y AGP son semejantes, por lo que 
millasAPAC
GP
BC
AP
AC
9929,1
3
9788,5
3
1 ==×=⇒= 
En resumen, el barco pirata habrá recorrido, hasta C, 
millasACAPCP 9859,39929,19788,5 =−=−= 
Al marchar a 20 millas por hora, tardará en llegar a C 
nutosmihorashorastmillast 122,0199,0
20
9859,3
'9859,3'20 =≅==⇒= 
 
Los piratas podrán disparar al cabo de 12 minutos de 
haber avistado el galeón y puesto el rumbo adecuado 
 
 
Cuatro exploradores, en una noche cerrada, necesitan cruzar un 
puente desde un mismo lado. Sólo tienen una linterna, necesaria para 
marchar a través del puente (en dirección a un lado o a otro) que, 
estrecho y débil de estructura, no permite que más de dos personas lo 
atraviesen a la vez. El puentees lo suficientemente largo para que sea 
imposible lanzar la linterna de un extremo a otro. 
Los exploradores, de distintas edades, tienen una velocidad individual 
para cruzarlo de manera que uno sólo lo podría cruzar en 1 minuto, 
otro en 2 minutos, el tercero en 5 minutos y el último en 10 minutos. 
Como los exploradores pueden caminar a velocidades diferentes, cada vez que una pareja de 
exploradores cruza el puente lo hace a la velocidad del que va más lento. 
Con estos datos, ¿qué estrategia tienen que usar los exploradores para poder pasar todos de un lado del 
puente al otro en el mínimo tiempo?... y… ¿cuál es ese mínimo tiempo que pueden tardar en cruzarlo? 
 
 
SOLUCIÓN 
1
er
 viaje: van los exploradores 1 y 2 con la linterna. En total, 2 minutos. 
2
o
 viaje: vuelve el explorador 2 con la linterna. Pasaron ya 2 + 2 = 4 minutos. 
3
er
 viaje: van los exploradores 3 y 4 con la linterna. Tardan 10 minutos, y más los 4 de antes suman 
14 minutos. 
4
o
 viaje: vuelve el explorador 1 (que había quedado en la otra orilla después del primer viaje) con 
la linterna. Ya suman 15 minutos. 
5
o
 viaje: Van de nuevo los exploradores 1 y 2. Total: 17 minutos. 
 
Tardan 17 minutos (mínimo tiempo) en atravesar el 
puente con la estrategia citada anteriormente 
 
Tengo 6 trozos de cadena, cada uno de 4 eslabones, y quiero hacer, con 
todos ellos, una única cadena. 
El herrero me cobra 20 euros por soldar un eslabón y 5 euros por 
cortarlo. 
¿Por cuánto dinero puedo tener la cadena unida completa? 
 
SOLUCIÓN 
Se deben cortar los cuatro eslabones de un trozo y unir los otros 5 trozos con ellos, por lo que el 
precio será: 5 euros x 4 cortes = 20 euros más 20 euros x 4 soldaduras = 80 euros 
 
El precio de unir la cadena es de 100 euros 
 
Calcula el resultado de elevar al cuadrado el número 
1234567890987654321234567890987654321 y restarle el producto de 
1234567890987654321234567890987654322 por 
1234567890987654321234567890987654320 
 
SOLUCIÓN 
Si llamamos p = 1234567890987654321234567890987654321, la operación es 
p
2 
– (p + 1) x (p – 1) = p
2 
– (p
2
 – 1) = p
2
 – p
2
 + 1 = 1 
 
El resultado es 1 
 
Dividir la figura amarilla con dos rectas en cuatro partes de manera que, 
uniéndolas, se construya un cuadrado. 
 
 
 
SOLUCIÓN 
Se corta por las líneas rojas que se muestran 
 
 
 
 
 
 
y la figura queda dividida en cuatro partes, que reubicamos 
 
 
 
 
quedando así un cuadrado: 
 
En un campeonato de tenis se juega a eliminatoria única con sus 
respectivos jugadores exentos en determinadas rondas, que pasan 
sin jugar. 
Si se inscriben 67 jugadores, ¿cuántos partidos deberán jugarse hasta 
que se proclame un vencedor del torneo? 
 
SOLUCIÓN 
Si es a eliminatoria única en cada partido se elimina un jugador y, como hay un ganador de 67 
jugadores (66 perdedores), 
 
Se juegan 66 partidos hasta determinar el ganador 
 
En la cocina había una tarta de cumpleaños que ha 
desaparecido. La familia tiene cinco hijos: Antonio, Benito, 
Conrado, Diego y Emilio, y la madre sabe que alguno, o varios, 
son los autores del desaguisado y les interroga. 
He aquí sus respuestas: 
• Antonio: Ha sido uno solo de nosotros. 
• Benito: No, de dos de nosotros. 
• Conrado: No, de tres de nosotros. 
• Diego: No, de cuatro de nosotros. 
• Emilio: Entre todos nos la comimos. 
La madre sabe que los inocentes dicen la verdad y que los culpables, que se la han comido, mienten. 
¿Quién o quiénes se comieron la tarta? 
 
SOLUCIÓN 
Como los cinco dicen frases incompatibles entre sí solo caben dos posibilidades: 
a) Que sólo uno diga la verdad. Los otros cuatro mienten y son los que se han comido la tarta. 
La afirmación verdadera es "Cuatro de nosotros se la comieron". Diego dice la verdad y los 
demás mienten. 
b) Que no la diga ninguno. Pero, si todos mienten, la tarta no se la comió nadie y esto es 
incompatible con lo que sabe la madre. 
 
La tarta se la comieron Antonio, Benito, Conrado y Emilio 
 
Cuenta la leyenda que un velero pirata llegó a una remota isla perseguido por galeones españoles y, en 
ella, el capitán escondió el botín que llevaba a bordo, fruto de sus abordajes. 
Desembarcó, con sus secuaces, en una playa desierta donde había una palmera y una roca. Clavó en la 
playa su espada y, desde ella, caminó en linea recta hasta la palmera. Estando en ella giró 90º en sentido 
contrario de las agujas del reloj y anduvo (siempre en línea recta) la misma distancia anterior, en donde 
hincó una estaca. 
Volvió a la posición de la espada y caminó, también en línea recta, hasta la roca y, girando 90º en el 
mismo sentido de las agujas del reloj, repitió la misma distancia, y del mismo modo, hasta un punto en 
donde clavó otra estaca. 
Buscó el punto medio entre las dos estacas y allí ordenó enterrar el tesoro. De inmediato mandó recoger 
la espada y las estacas para, así, proteger la situación exacta del tesoro. 
Volvió al barco con su tripulación y siguió con sus fechorías… hasta que pasaron diez años. Entonces 
volvió a la isla y desenterró el tesoro. 
¿Cómo consiguió localizar el tesoro con la ayuda, únicamente, de la situación de la palmera y de la roca, 
que aún permanecían allí? 
 
SOLUCIÓN 
Vemos en la imagen adjunta el esquema del problema. 
Vamos a demostrar que la posición del tesoro sólo 
depende de la posición de la palmera y de la roca, que 
permanecen en la isla en la segunda visita del pirata. 
Con esos dos elementos determinaremos 
inmediatamente la situación del tesoro. 
Para ello, consideramos el esquema sin elementos ‘de 
adorno’ y establecemos un sistema cartesiano en el que 
el eje de abcisas es la recta que pasa por P y R y el eje de 
ordenadas la perpendicular a la anterior pasando por M, punto medio de P y R: 
Usando vectores, ),( qpaMSMPSP −−−=−= y el perpendicular con el mismo módulo (en 
sentido contrario a las agujas del reloj) es ),(1 paqPE −−= 
Por otro lado, ),( qpaMEMRER −−=−= y el perpendicular con el mismo módulo (en el sentido 
de las agujas del reloj) es ),(2 paqRE +−−= 
Por tanto, los vectores de posición de los puntos correspondientes a las estacas son, 
respectivamente, ),(11 paqaPEMPME −−+−=+= , coordenadas cartesianas del punto 1E , y 
),(22 paqaREMRME +−−=+= , coordenadas cartesianas del punto 2E 
Evidentemente, el punto medio de 1E y 2E será ),0( aM − , punto de localización del tesoro. 
Claramente se ve que su situación solo depende de la de la palmera y la de la roca. 
 
El tesoro se encuentra en la mediatriz del segmento 
formado por la palmera y la roca y a la misma distancia 
del punto medio que la mitad de la distancia entre ellas 
 
¿Qué área es mayor, la parte roja o la parte blanca de la figura? 
 
SOLUCIÓN 
 
Basta dividir la figura en polígonos iguales (uno blanco y otro rojo) como se ve para determinar 
que 
Las áreas son iguales 
 
María está disfrutando de un viaje de placer de un mes en Roma con Luís. En 
este momento, el hijo de ambos tiene 21 años menos que ella. 
En 6 años, el chico será, exactamente, 5 veces menor que ella. 
¿Qué están haciendo, con seguridad, estos días? 
 
SOLUCIÓN 
El niño tiene hoy a años y su madre b años, 21 años mayor que el hijo: por tanto, b = a+21. Si en 6 años el 
muchacho será 5 veces menor que su madre se cumplirá que 5.(a+ 6) = b+6 
El sistema formado por las dos ecuaciones nos permite deducir (sustituyendo b en la segunda ecuación) 
que a=-3/4. Entonces, el niño tiene hoy -3/4 de año, que representan -9 meses: dentro de 9 meses nacerá 
el niño, por lo que 
 
María y Luís están haciendo el amor 
(con éxito de embarazo) 
 
Juan, José y Jaime son tres amigos aficionados al atletismo que deciden 
competir entre ellos haciendo una carrera de 5 kilómetros cada día. 
Para hacerlo más interesante establecen que, en cada carrera, el 
primero obtendrá 50 puntos, el segundo 20 y el tercero 10. Cuando 
acaben la temporada, el que tenga más puntos será invitadopor los 
otros dos a una cena. 
Juan queda segundo veinte veces más que tercero y, finalmente, 
obtiene 2700 puntos. 
¿Cuántos días compiten? 
 
SOLUCIÓN 
Llamamos x al número de veces que Juan queda tercero, x20 a las veces que queda segundo e y a las 
veces que gana la carrera. Entonces, yxyxxN +=++= 2120 será el número de carreras realizadas y, 
por tanto, el número de días que compiten. 
Si Juan obtiene 2700 puntos, es evidente que ⇒=+⇒=+×+ 270050410270050202010 yxyxx 
5
854
5
41270
270541
x
x
x
yyx −−=−=⇒=+⇒ 
Como x e y indican las veces que ha quedado tercero y primero (respectivamente), esos números deben 
ser enteros positivos por lo que debe cumplirse que 135 =⇒= yx , únicos valores que permiten la 
afirmación anterior. 
En conclusión, Juan queda 5 veces tercero, 100 veces segundo y 13 veces primero, por lo que 
 
Compiten 118 días 
 
Sustituye, en la suma siguiente, las letras por cifras (de 0 a 9) teniendo en cuenta que a cada letra distinta 
le corresponde una cifra diferente 
 
 
SOLUCIÓN 
Evidentemente M=1. Por tanto, las últimas cifras de la izquierda implican que S vale 8 o 9, y O vale 0 o 1. 
Si fuera S=8 tendríamos que O=0 y E=9, lo cual es imposible pues se deduciría que N=0, hecho 
contradictorio al ser la letra N distinta de la letra O. 
En resumen, M=1, S=9 y, en consecuencia, O=0 pues E no puede ser 9. 
Se deduce entonces que E+1=N, por lo que 
• N+R=10+E, que conduce a que R=9, contradictorio con el hecho de que S=9 y R no es S 
• N+R+1=10+E, que permite deducir que R=8 
De R=8 y E+1=N se obtiene por descarte, con las cifras que quedan, que N=6 y E=5. 
Por último, fácilmente puede obtenerse que Y=2 y D=7. 
En conclusión la suma pedida es 
 
 
 
Me encontré el otro día a un antiguo alumno. Después de una agradable 
conversación y, hablando de lo mucho que le gustaban las matemáticas, le 
comenté: “Fíjate. Tengo el doble de la edad que tú tenías cuando yo tenía la edad 
que tú tienes” 
¿Cuáles son nuestras edades actuales si entre los dos tenemos 105 años? 
 
 
SOLUCIÓN 
Llamemos x a mi edad e y a la del alumno. Cuando yo tenía la edad que él tiene han pasado yx − años, 
por lo que yo tenía y años y él, ( ) xyyxy −=−− 2 años. En consecuencia, ⇒−=−= xyxyx 24)2.(2 
yx 43 =⇒ 
Por otro lado, 105=+ yx . Tomando las dos ecuaciones se obtiene que ( )⇒−=⇒−= xxxy 105.43105 
⇒=⇒−=⇒ 420744203 xxx 60=x e 45=y 
Por tanto 
 
Tengo 60 años y el alumno tiene 45 años 
 
 
¿Cuántos kilómetros nos quedan si, después de haber recorrido la tercera parte de la 
carretera, faltan 50 kilómetros para llegar a la mitad? 
 
SOLUCIÓN 
Llamemos x al total de kilómetros de la carretera. 
Según lo que nos dice el enunciado, 50
6
50
32
=⇒++= xxxx , luego la carretera tiene 300 kilómetros. 
Entonces, hemos recorrido 100
3
300
3
==x kilómetros y, por tanto, 
 
Faltan 200 kilómetros 
 
Un punto está situado en el interior de un cuadrado y su distancia 
respectiva a tres vértices consecutivos es de 3, 4 y 5 cm. ¿cuánto mide el 
lado del cuadrado? 
 
 
 
 
 
SOLUCIÓN 
Sea x el lado del cuadrado. Trazamos las alturas OF y OG , 
respectivas de los triángulos AOB y BOC 
También, hacemos pBF = , qBG = 
Por el teorema de Pitágoras, 
( )
( )
⇒




−=−−=
−=−−=
22222
22222
45
43
qqxOG
ppxOF
 






−=
+=
⇒



−=
+=
⇒



−=−+−
−=−+−
⇒
x
x
q
x
x
p
xqx
xpx
qqqxx
pppxx
2
9
2
7
92
72
16225
1629
2
2
2
2
222
222
 
Por otro lado, y por el mismo teorema, 
222 4=+ qp . Sustituyendo queda 
⇒=+−⇒=+−+++⇒=




 −+




 + 224
2
24242222
641304216
4
81184914
16
2
9
2
7
xxx
x
xxxx
x
x
x
x
 
065340130682 2424 =+−⇒=+−⇒ xxxx 
Resolvemos la ecuación bicuadrada: 



≅
≅
⇒±=−±=⇒
43,1
65,5
9666,1417651717 22
x
x
x , rechazando 
los valores negativos que se obtienen dado el contexto del problema. 
Evidentemente, la única solución válida es la primera, pues el lado del cuadrado debe ser, al menos, mayor 
que 3 , por lo que 
 
El lado del cuadrado mide 5,65 cm 
 
Teniendo en cuenta que todas las letras se corresponden con los diez dígitios del sistema 
decimal (de 0 a 9) y que a letras diferentes les coresponden dígitos diferentes, hallar el 
valor de la suma. 
 
 
 
SOLUCIÓN 
Haciendo la descomposición numérica obtenemos que 
⇒++=++++++++ JJJIHGFEDCBA 10100101001010010100 
( ) ( ) ⇒=+++++×+++×⇒ JIFCHEBGDA 11110100 
( ) ( ) JIHGFEDCBAHEBGDA 111999 =+++++++++++×+++×⇒ 
Por otro lado, sabemos que 
⇒−=++++++++⇒=+++++++++ JIHGFEDCBA 45459876543210 
( ) ( ) ( ) ( ) ⇒=+++×+++×⇒=−+++×+++×⇒ JHEBGDAJJHEBGDA 1124599911145999 
(dividiendo por 9 ) ( )
9
112
59
J
HEBGDA =++++++×⇒ 
Como el primer miembro de la igualdad es un valor entero, el segundo también debe serlo. Y, entonces, si 
112 y 9 son primos entre sí, J debe ser un múltiplo de 9 por lo que, al ser un dígito, 9=J y 
 
JJJ = 999 
 
Un grupo de soldados, en una parada militar, va desfilando en 
formación rectangular de 20 metros de largo y avanzando con 
paso uniforme. La mascota, una cabra, parte del centro de la 
última fila en línea recta hasta el centro de la primera fila y 
regresa del mismo modo hasta el centro de la última fila. En el 
momento de alcanzar el centro de la última fila, los soldados 
han recorrido exactamente 20 metros. Suponiendo que se 
desplace con velocidad constante y que no pierda tiempo en los 
giros, ¿cuántos metros ha recorrido la cabra? 
 
SOLUCIÓN 
Construimos el esquema: 
 
La cabra, según el esquema anterior, ha recorrido x220 + metros. 
Llamamos v a la velocidad de los soldados w a la de la cabra, ambas constantes. Teniendo en cuenta la 
fórmula espacio = velocidad x tiempo, planteamos las igualdades siguientes para el tiempo 1t transcurrido 
en el que la cabra va en la misma dirección que los soldados: 
w
v
x
x
twx
tvx
=
+
⇒



×=+
×=
2020 1
1 
Para el tiempo 2t en el que van en direcciones opuestas: 
w
v
x
x
twx
tvx
=−⇒



×=
×=− 2020
2
2 
Y, por igualación obtenemos que 2104002400
20
20
222 =⇒=⇒−=⇒−=
+
xxxx
x
x
x
x
 
Por tanto, la distancia recorrida por la cabra es 28,4822020220 =+=+ x metros 
 
La cabra ha recorrido 48,28 m 
 
Los números primos se distribuyen de forma ‘aleatoria’ (hasta la fecha, pues no 
se ha conseguido demostrar aún que sigan alguna pauta regular) en el conjunto 
de los números naturales y suelen aparecer habitualmente cuando recorremos 
dicho conjunto pero, ¿existe algún conjunto de un millón de números naturales 
consecutivos que no contenga ningún primo?... si existe, ¿podrías indicar uno? 
 
SOLUCIÓN 
Existe. Basta tomar el número 2!10000011 +=x y tomar la sucesión de números consecutivos 
1000000,...,2,1!1000001 =∀++= iixi . 
Todos los números son compuestos pues cada ix es divisible por 1000000,...,1,1 =∀+ ii 
 
Un conjunto de un millón de números naturales 
consecutivos y compuestos puede ser el que se cita 
 
Estamos ante un grifo y tenemos dos cubos vacíos en los que caben 3 y 5 litros 
respectivamente. ¿Cómo podemos llenar, en el cubo de 5 litros, 4 litros exactos de 
agua si no tenemos más medidas que esas? 
 
 
 
SOLUCIÓN 
Seguimos los siguientes pasos: 
1. Llenamos el recipiente de 3 litros (R3) y volcamos su contenido en el de 5 litros (R5) 
2. Repetimos la operación otra vez: llenamos R3 y volcamos su contenido en R5 hasta 
completarlo. En ese momento, R5 estará lleno y R3 contendrá un litro. 
3. Vaciamos R5 y volcamos el litro de R3 en R5 
4. Por tercera vez llenamos R3 y volcamos su contenido en R5, que contendrá exactamente los 
4 litros. 
 
Siguiendo los 4 pasos anteriores se soluciona el problema 
 
Si un ciclista marcha con una velocidad de 20 kilómetros a la hora, llega a Fraga una 
hora después del mediodía. 
Si la velocidad es de 30 kilómetros por hora, alcanza Fraga una hora antes del mediodía. 
¿A qué velocidad debe ir para llegar a Fraga exactamente a mediodía? 
 
SOLUCIÓN 
Llamamos t altiempo que tardaría el ciclista en llegar a Fraga a mediodía. 
Según el enunciado, usando la fórmula tiempovelocidadespacio ×= , 
( ) ( ) 55010130120 =⇒=⇒−×=+× tttt horas. 
Por tanto, el recorrido es de ( ) 1201520 =+× kilómetros y, la velocidad que debe llevar para estar en Fraga 
a mediodía es hkm
horas
kilómetros
velocidad /24
5
120 == 
 
La velocidad debe ser de 24 kilómetros por hora para 
llegar a Fraga a las 12 del mediodía 
 
Cuatro matrimonios están tomando tapas en un bar. Silvia toma una tapa, Raquel dos, 
Tere tres y Merche cuatro. 
Rubén toma las mismas tapas que su mujer, Marcos el doble que la suya, Tomás el triple 
que la suya y Sebastián cuatro veces más que la suya. 
Si en la mesa quedan 32 palillos, desechos de cada una de las respectivas tapas 
consumidas, ¿cómo se llama la mujer de Tomás? 
 
SOLUCIÓN 
Las mujeres consumen, en total, 10 tapas, por lo que los hombres comen 22. 
Como 22 es par en la consumición de los hombres, o bien 22 es la suma de cuatro impares, imposible por 
las condiciones del problema, o de cuatro impares, también imposible, o de dos pares y dos impares, lo cual 
nos determina cuatro posibilidades (1x1+2x2+3x3+4x4=30, 3x1+2x2+1x3+4x4=26, 1x1+4x2+3x3+2x4=26, 
3x1+4x2+1x3+2x4=22), siendo la correcta la correspondiente a 
Parejas Consumición 
Silvia-Tomás 1+3x1=4 
Raquel-Sebastián 2+4x2=10 
Tere-Rubén 3+1x3=6 
Merche-Marcos 4+2x4=12 
que hacen un total de 32 palillos. 
 
La mujer de Tomás es Silvia 
 
A Nazario le han encargado que decore, con plantas y flores a su gusto, un 
parterre ya delimitado en forma de corona circular, con una fuente en el 
centro. 
Necesita saber los metros cuadrados que tiene, por lo que le pide a su hijo 
Pablo que haga las mediciones correspondientes. 
Pablo, con notable eficacia, trae una única medida de 8 metros dentro del 
parterre y asegura que, con ella, se puede determinar perfectamente el área de la corona circular. 
¿Cómo ha medido?, ¿cuál es el valor de la superficie del parterre? 
 
 
SOLUCIÓN 
Pablo mide la longitud de una cuerda, de la circunferencia exterior, 
tangente a la circunferencia interior. 
Si r es el radio de la circunferencia interior y Rel radio de la 
exterior puede observarse claramente que, por el teorema de 
Pitágoras, 164
2
8 222
2
22 ==−⇒




+= rRrR . 
Como el área de una corona circular es la diferencia entre medidas 
de la superficie del círculo mayor y la superficie del círculo menor, 
( ) 22222 27,5016 mrRrRÁrea ==−=−= ππππ 
 
La superficie del parterre es de 50,27 metros cuadrados 
 
El radio del círculo inscrito en un triangulo rectángulo mide 2 cm y el del circunscrito 5 cm. 
¿ Cuánto mide la suma de los catetos ? 
 
 
SOLUCIÓN 
Se trata de hallar la suma NQNPS += 
Si el radio del círculo circunscrito al triángulo rectángulo es 5 cm, la 
hipotenusa, que equivale al diámetro, mide 10 cm: 10=PQ cm. 
Consideramos los triángulos formados por el centro del círculo 
inscrito y los vértices del triángulo: NOP, POQ y QON . La suma 
de sus áreas equivale al área del triángulo rectángulo. Por tanto, 
⇒
×=++=++
22
2
2
2
2
2 NQNPNQPQNP
ÁreaÁreaÁrea QONPOQNOP
 
2
10
2
NQNP
S
NQNP
NQPQNP
×=+⇒×=++⇒ 
Por otro lado, ( ) 404102 22222 ++=⇒×++=+⇒ SSNQNPNQNPNQNP , aplicando el teorema de 
Pitágoras en el triángulo rectángulo y la igualdad deducida anteriormente. 
En resumen, 14014042 =⇒=−− SSS , única solución válida en el contexto del problema (la otra es de 
valor negativo). 
Por lo tanto, 
 
La suma de los catetos es 14 centímetros 
 
Mariano González no ha cumplido aún los 40 y ya tiene familia numerosa. 
Si escribimos tres veces seguidas su edad, el número obtenido es el producto de su 
edad por la de su mujer y la de cada uno de sus cinco hijos. 
¿Cuál es la edad de todos los miembros de la familia? 
 
 
SOLUCIÓN 
Si ab es la edad de Mariano, el número resultante de escribir tres veces su edad es 
abbababababaababab 10101)10(101011010110101011010010001000010000 =+×=+×=+++++= 
Si descomponemos factorialmente el número que se obtiene, 37137310101 ×××= y, por tanto, 
abababababab ××××××=××××== 3713731137137310101 
Por lo tanto no podemos saber la edad de Mariano, pero 
 
La mujer de Mariano tiene 37 años 
y sus hijos tienen 1, 1, 3, 7 y 13 años 
 
Se celebró un sorteo con premios en el que participaron 1958 personas. El 89% 
consiguió un premio y del 11% restante la mitad obtuvo dos y la otra mitad 
ninguno. 
¿Cuántos premios se repartieron? 
 
 
SOLUCIÓN 
Es evidente: el promedio de premios del 11% restante de los participantes es 1, por lo que, teniendo en 
cuenta que el 89% recibió un premio… hubo tantos premios como participantes, por lo que 
 
Se repartieron 1958 premios 
 
Un viajante está reservando una habitación en un hotel para una semana. 
Al ir a dar su tarjeta de crédito se da cuenta de que la ha perdido. Llama 
al banco y le dicen que tardarán una semana en darle una nueva. 
Entonces propone al dueño del hotel pagarle con una cadena de oro de 7 
eslabones, en la que cada eslabón vale exactamente el precio de una 
noche. En el momento en que reciba la tarjeta de crédito pagará con ella 
y el hostelero le devolverá la cadena. 
Éste está de acuerdo, pero prefiere cobrar cada día con un eslabón. 
Como luego va a tener que recomponer la cadena, el viajante piensa cortar el mínimo numero posible de 
eslabones. ¿Cuántos cortará? 
 
 
SOLUCIÓN 
Basta que corte el tercer eslabón y deje tres trozos: uno de un eslabón (el cortado), otro de dos y otro de 
cuatro. 
Así, el primer día pagará con un eslabón. El segundo entregará el trozo de dos eslabones y recibirá el que 
entregó el día anterior, que volverá a entregarlo en tercer día. 
El cuarto día entregará el trozo de cuatro eslabones y recibirá los otros dos trozos. El quinto, sexto y 
séptimo día repetirá el proceso de los tres primeros días. 
 
Sólo tendrá que cortar un eslabón 
 
Intercalando las operaciones matemáticas pertinentes (¡valen todas y los 
paréntesis!) hay que conseguir 
a) Con seis unos hacer 100, con seis doses hacer 100… y, así, hasta con 
seis nueves. 
b) Con cinco unos hacer 10, con cinco doses hacer 10… y, así, hasta con cinco nueves. 
c) Con cuatro nueves hacer 2, con cuatro ochos hacer 3, con cuatro sietes hacer 4, con cuatro seises 
hacer 5, con cuatro cincos hacer 6, con cuatro cuatros hacer 7, con cuatro treses hacer 8, con 
cuatro doses hacer 9 y con cuatro unos hacer 10 
 
 
SOLUCIÓN 
a) La expresión general, para cualquier dígito x de 1 a 9, es ( ) xxxxxx ÷− 
b) La expresión general, para cualquier dígito x de 1 a 9, es ( ) xxxxx ×÷− 
c) La expresión general, para cualquier dígito x de 1 a 9, es xxxx −÷ 
 
Las expresiones anteriores son las óptimas para 
determinar los valores con las condiciones indicadas 
 
 
A Krans le entusiasma el submarinismo y, junto con unos amigos, ha descubierto 
un pequeño cofre del cargamento del galeón español 'Mercedes' oculto entre 
los restos del naufragio. Uno de ellos, argumentando que no todos llevan el 
mismo tiempo buceando, propone repartirlo en base a sus edades dando dos 
monedas de oro al más joven, cuatro monedas al siguiente, ocho, dieciseis... y 
así sucesivamente. 
 
Krans, que casualmente es el más joven, consigue convencerles de hacer partes 
iguales (sus dos metros de altura ayudaron bastante). 
 
¿Cuántos submarinistas encontraron el tesoro teniendo en cuenta que eran menos de veinte? 
 
 
SOLUCIÓN 
Si son n submarinistas, con el reparto original 222...168642 1 −=++++++ +nn será el número de 
monedas que hay, con 2≥n . 
Por otro lado, si hacen partes iguales, y recibe cada uno m monedas, se cumplirá que nmn ×=−+ 22 1 
Entonces, ( ) nmnn ×=−×=−+ 12222 1 es un número par, lo que indica que, al menos uno de los dos 
números, m o n , es par y, además, 
( )
n
m
n 122 −×= 
a) Si n es impar: n es divisor de 12 −n , lo cual no se cumple para ningún valor impar menor a 20 . 
b) Si n es par:2/
12
n
m
n −= y 2/n debe ser impar, luego 18,14,10,6,2=n . Se cumple para 2=n 
( )3=m , 6=n ( 21=m ) y 18=n ( 29127=m ) 
 
Hay tres soluciones posibles: 
2 amigos que se reparten 3 monedas cada uno 
6 amigos que se reparten 21 monedas cada uno 
18 amigos que se reparten 29127 monedas cada uno 
 
La serpiente del Paraíso Terrenal mentía los martes, jueves y sábados. Los demás días 
decía la verdad. 
 
- Eva, cómete una manzana. 
- No puedo, lo tengo prohibido. 
-Aprovecha. Hoy es sábado y Él está descansando. 
- No, no… tal vez mañana. 
- Mañana es miércoles y será tarde. 
 
Y ella comió y así nos va a todos. ¿Qué día de la semana fué? 
 
 
SOLUCIÓN 
Como la serpiente miente el sábado es imposible que sea sábado, por lo que está mintiendo y el día es el 
martes o el jueves. 
Si dice ‘mañana es miércoles’ y está mintiendo no puede ser martes, por lo que el día en el que se produce 
la conversación debe ser 
 
Jueves 
 
En el triángulo ABC dibujamos siete segmentos, paralelos al lado BC, que dividen 
en 8 partes iguales al lado AC. Si BC = 10 centímetros, ¿cuál es la suma de las 
longitudes de los 7 segmentos? 
 
 
SOLUCIÓN 
Basta girar 180º el triángulo original y adjuntarlo, construyendo así un 
paralelogramo en el que se complementan todos los segmentos a la 
misma longitud que el lado BC. 
Por lo tanto, la suma pedida será la mitad de la que suman los siete de 
la nueva construcción, a razón de 10 centímetros cada uno. 
 
Suman 35 centímetros 
 
Teniendo en cuenta que a letras diferentes les corresponden dígitos diferentes y que O no 
es nulo, hallar el valor de la suma. 
 
 
 
SOLUCIÓN 
Debe estar claro que 30 ≤< O y, por tanto, OS += 104 o OS += 204 o OS += 304 
De ahí, 2=O y , entonces, 3=S o 8=S , porque del caso OS += 204 no obtenemos valor válido. 
De lo anterior, y mediante deducciones elementales, llegamos a tres posibilidades cuando 3=S : 
 
 
 
 
 
 
 
 
 
y a dos en el caso de 8=S : 
 
 
 
 
 
 
 
 
 
 
A Josepha Braum le preguntaron en una ocasión: ¿qué hacia usted el 30 de diciembre 
de 1829? 
Uffff, no tengo ni idea, contestó. Eso sí, sé que tenía tantos años como los que suman 
las cuatro cifras del año de mi nacimiento. 
¿Cuál es la fecha de su nacimiento? 
 
 
SOLUCIÓN 
Vamos a calcular el año de su nacimiento. 
No pudo nacer en el siglo XVIII porque el mayor valor de la suma de las cifras sería 269971 =+++ y, sin 
embargo, su edad debería ser 30 . Años anteriores aumentan la diferencia entre la suma de las cifras y la 
edad. 
Por tanto, suponemos que nació en el año ab18 y tenía cumplidos los años en 1829 . Entonces, 
( ) ⇒++=−−⇒++=++−⇒+++=− bababababaab 910299101800182981181829 
20211 =+⇒ ba , ecuación diofántica que intentamos resolver: 
2
510
2
1120
20211
a
a
a
bba −−=−=⇒=+ . Si hacemos tbta 11102 −=⇒= y, no existe ningún valor de 
t para el que a y b sean cifras del sistema decimal: no hay, en este caso, solución. 
La única posibilidad que queda es que naciese en ab18 pero aún no hubiera cumplido años en 1829 a 30 
de diciembre. 
En ese supuesto ( ) ⇒++=++−⇒+++=−− bababaab 91018001828811811829 
2
1
59
2
1119
2111991028
a
a
a
bbababa
−+−=−=⇒+=⇒++=−−⇒ . 
 Entonces, tbtat
a
11421
2
1 +=⇒−=⇒=− y las únicas cifras válidas son para 0=t . En ese caso 
1=a y 4=b , por lo que 
 
Josepha Braum nació el 31 de diciembre de 1814 
 
En una maratón han participado 6522 personas. El 56,56565656…% de los que llegaron a la 
meta eran hombres y el 56,756756756…% de quienes acabaron eran menores de 40 años. 
¿Cuánta gente abandonó? 
 
 
SOLUCIÓN 
Escribamos, en forma de fracción, los porcentajes dados respecto al número total s de personas que 
acabaron la prueba: ssde
99
5600
%56,56 = son hombres y ssde
37
2100
%756,56 = son menores de 40 
años. 
Son fracciones irreducibles y como s es entero debe ser múltiplo de 99 y de 37 (primos entre sí) y menor 
que 4000 
El único valor válido es 366399371 =××=s personas alcanzaron la meta, por lo que 
 
337 personas abandonaron la maratón 
 
Al encontrarse en la celebración de un cumpleaños, dos hombres se saludaban 
con un apretón de manos y tanto dos mujeres como mujer y hombre se daban un 
beso. 
 
Alguien contó que se dieron, en total, 21 apretones de manos y 34 besos. 
¿Cuántas personas estaban en la fiesta? 
 
 
SOLUCIÓN 
Vamos a llamar h al número de hombres y m al número de mujeres. 
Echando mano de la combinatoria, si hubo 21 apretones de manos entre cada dos hombres se cumple que 
( )
704221
2
1
2
2
2 =⇒=−−⇒=
−×=





= hhhhh
h
C h , única solución positiva. Hay 7 hombres. 
Para el caso de los besos, éstos se realizan con una mujer y una mujer o una mujer y un hombre, por lo que 
el número de besos será 
( )
406813347
2
1
347 22 =⇒=−+⇒=+
−×
⇒=+ mmmmmmmCm , única 
solución positiva. Hay 4 mujeres. 
Por tanto, 
 
11 personas estuvieron en la celebración 
 
Los números reales no nulos a y b verifican la igualdad 1
2 44
22
=
− ba
ba
. Encuentra, 
razonadamente, todos los valores tomados por la expresión 22
22
ba
ba
+
−
 
 
 
SOLUCIÓN 
Sabemos que 0≠a y 0≠b . 
Entonces, ⇒=−−−⇒=−−⇒−=⇒=
−
00221
2
2244422444422
44
22
babbababababa
ba
ba
 
( )( ) ( ) 02222222 =+−+−⇒ babbaba , y como 2222222 200 babbaba =⇒=−−⇒≠+ 
En conclusión, 
3
1
32
2
2
2
22
22
22
22
==
+
−=
+
−
b
b
bb
bb
ba
ba
, pues 02 ≠b 
Por tanto, 
 
La expresión vale siempre 1/3 
 
En la construcción de una casa dos albañiles, Ramiro y Roque, se repartieron a ojo 
unos 100 ladrillos en dos montones de modo que quedaran los dos más o menos 
parejos. 
Se pusieron a trabajar y mientras que Ramiro los colocaba en columnas de cinco 
ladrillos, Roque lo hacía en columnas de siete. 
Cuando acabaron, a Ramiro le quedaban 2 ladrillos sin colocar y a Roque cuatro 
ladrillos. 
¿ De cuantos ladrillos era cada montón ? 
 
 
SOLUCIÓN 
Sean a el número de columnas que puso Ramiro y b el número de las columnas que puso Roque. 
Entonces, 4855025 ≈⇒≈+ aa y 4675047 ≈⇒≈+ ab . De ahí, podemos deducir, por defecto y por 
exceso que 109 oa = y 76 ob = . Los únicos valores que hacen que haya exactamente 100 ladrillos son 
9=a ( )4725 =+a y 7=b ( )5347 =+b , por lo que 
 
El montón de Ramiro era de 47 ladrillos y el montón de 
Roque era de 53 ladrillos 
 
Tenemos las sucesiones 
a) 1, 2, 3, 5, 16, … 
b) 1, 2, 3, 7, 16, … 
c) 1, 2, 3, 7, 22, … 
¿Cuáles son los dos siguientes términos de cada una de estas sucesiones?, ¿cuál 
es la regla de construcción respectiva? 
 
 
SOLUCIÓN 
a) La sucesión se puede definir con los dos primeros números de manera arbitraria y cada término, a 
partir del tercero, es la diferencia entre los cuadrados de los dos términos anteriores: 
3,,2,1 2 2
2
121 ≥∀−=== −− naaaaa nnn 
b) La sucesión se puede definir con los dos primeros números de manera arbitraria y cada término, a 
partir del tercero, es la suma del precedente y el cuadrado del situado dos lugares antes: 
3,,2,1 2 2121 ≥∀+=== −− naaaaa nnn 
c) La sucesión se puede definir con los dos primeros números de manera arbitraria y cada término, a 
partir del tercero, es el producto de los dos anteriores aumentado en una unidad: 
3,1,2,1 2121 ≥∀+×=== −− naaaaa nnn 
Por lo tanto, los dos términos siguientes de cada sucesión serán 
 
a) …, 231, 53105, … 
b) …, 65, 321, … 
c) …, 155, 3411, … 
 
Un perro está persiguiendo a un conejo tratando de darle caza. Cada 5 saltos que da 
el conejo el perro da 4, pero 8 saltos de éste equivalen a 11 saltos de aquél. 
Si el conejo lleva 66 saltos suyos de ventaja, ¿cuántos saltos dará el perro 
para alcanzar al conejo? 
 
 
SOLUCIÓN 
Como los saltos perro-conejo están en la proporción de longitudes de 
8
11
, mientras el conejo da 5 saltos 
el perro da 5,5
2
11
4
8
11 ==× saltos como el conejo. Es decir, el perro le gana medio saltoal conejo cada 5 
saltos de éste o, lo que es lo mismo, el perro gana un salto conejil cada 10 del conejo. 
Por tanto el perro, para llegar a alcanzarlo, necesitará que el conejo de 660 saltos si éste lleva 66 saltos de 
ventaja. El perro habrá dado 72666066 =+ saltos de conejo que, según la proporción dada, equivalen a 
528
11
8
726 =× saltos perrunos. 
 
El perro da 528 saltos hasta alcanzar al conejo 
 
Tengo 2 hijos y uno de ellos es varón, ¿cuál es la probabilidad de que los dos lo sean? 
 
 
SOLUCIÓN 
Las posibilidades de hijos e hijas son VH, HV, VV, HH (V: varón y H: Hembra). Si hay un hijo 
varón sólo las tres primeras posibilidades son válidas, de las cuales una (VV) es la que sería favorable, luego 
 
La probabilidad de que sean dos varones es ⅓ 
 
Una atleta debe transportar una pértiga de 5 metros en un avión. La compañía no 
permite bultos con dimensiones superiores a los 3 metros. ¿Cómo puede enviarla si 
la pértiga no puede plegarse ni doblarse? 
 
 
SOLUCIÓN 
Usando 
una caja cúbica cuyas dimensiones sean 
3x3x3 metros 
 y colocando la pértiga en una diagonal de la caja. La diagonal vale 
20,5333 222 =++=d metros, por lo que puede contener a la pértiga, que 
mide 5 metros. 
 
En un almacén de frutas hay mucha actividad. Tanta que, un día, se 
equivocaron en el etiquetado de un encargo. 
Tenían preparadas tres cajas: una sólo de melocotones, otra sólo de 
peras y otra con una mezcla de peras y melocotones. Pusieron las 
etiquetas en cada una de las cajas: ‘melocotones’, ‘peras’, ‘peras y 
melocotones’… pero ninguna se correspondía con su contenido. 
¿De qué caja hay que sacar una sola pieza de fruta para observarla y, después, colocar cada etiqueta en la 
caja adecuada? 
 
 
SOLUCIÓN 
Se saca una pieza de la caja rotulada con ’peras y melocotones’ pues ahí sólo hay melocotones o sólo 
peras al no estar la etiqueta acorde con su contenido. 
Hay dos posibilidades: 
• Si sacamos una pera, esa caja debe rotularse con ‘peras’, la que dice ‘peras’ debe rotularse con 
‘melocotones’ y la que dice ‘melocotones’ debe rotularse con ‘melocotones y peras’. 
• Si sacamos un melocotón, esa caja debe rotularse con ‘melocotones’, la que dice ‘melocotones’ 
debe rotularse con ‘peras’ y la que dice ‘peras’ debe rotularse con ‘melocotones y peras’. 
 
 
Rosendo y Marisol tienen un cierto número de cromos cada uno (R y M). En la 
escuela están aprendiendo las cuatro operaciones básicas: Rosendo suma 
ambos números (R+M) y Marisol los multiplica (RxM). 
No contentos con eso, Rosendo resta el menor del mayor (R-M o M-R) y Marisol 
divide el mayor por el menor (R/M o M/R). 
Por último, suman los cuatro resultados y obtienen 243. 
Cuantos cromos tiene cada uno? 
 
 
SOLUCIÓN 
Hagamos, suponiendo que MR > , la factorización de la última operación efectuada: 
( ) ( ) ⇒++×=




 ++×=+×+=+×+−++
M
MM
R
M
MR
M
R
MRR
M
R
MRMRMR
121
22
2
( ) ( ) 52
2
32431
1 ==+×=+×⇒ M
M
R
M
M
R 
De ahí se deducen dos posibilidades: 
a) ( ) 54,2273,931 322 ==⇒====+ RM
M
R
M , y 
b) ( ) 24,83,8131 42 ==⇒===+ RM
M
R
M 
Por tanto, 
Rosendo puede tener 54 cromos y Marisol 2 
… o … 
Rosendo puede tener 24 cromos y Marisol 8 
… o viceversa 
 
 
Un numero natural a está formado por más de una cifra. Al multiplicar a por 29 se obtiene a, 
pero precedido y seguido por otra cifra B, es decir: ax29 = BaB. 
¿Cuál es el mínimo número a que cumple esas condiciones? 
 
 
SOLUCIÓN 
Si ( ) ( )
19
110
11019101029
+×=⇒+×=×⇒+×+×==×
n
nn BaBaBaBBaBa 
De ahí, mn ×=+ 19110 , pues B es una cifra. Es decir, 
19
110 +=
n
m debe ser un número natural. 
El mínimo que cumple las condiciones es 52631579=m , pues 110110000000005263157919 9 +=+=× 
Por tanto 
( )
52631579
19
110 ×=+×= BBa
n
y el mínimo número natural buscado es (para 1=B ), 
 
52631579 
 
Quiero construir un calendario con dos cubos, los cuales indicarán el día a día de 
los meses. 
 
¿Qué cifras deberé colocar en cada cara de los dos cubos para que se puedan 
indicar los 31 días de un mes cualquiera? 
 
SOLUCIÓN 
En un dado pueden ponerse las cifras 0, 1, 2, 3, 4 y 5, y en el otro, las cifras 0, 1, 2, 6, 7 y 8. 
En caso de necesidad del 9, se pone el 6 dándole la vuelta. 
 
 
La hierba crece en todo el prado con igual rapidez y espesura. Se sabe que 70 vacas se 
la comerían en 24 días y 30 vacas en 60 días. 
¿Cuántas vacas se comerían toda la hierba en 96 días? 
 
 
SOLUCIÓN 
Llamamos x al número de vacas que se pide y llamamos y al crecimiento diario de la hierba expresado en 
partes de la que hay inicialmente en el prado. 
Si en un día hay un crecimiento de y , en 24 días habrá un crecimiento de y24 . Tomando todo el pasto 
como una unidad, en 24 días las 70 vacas comerán y241+ . En un día, por tanto, comerán 
24
241 y+
 y una 
de las vacas comerá, en un día, 
70.24
241 y+
 
Por el mismo razonamiento, una de las 30 vacas (que consumen toda la hierba en 60 días) comerá en un 
día, 
60.30
601 y+
 
Evidentemente las cantidades deben ser idénticas, por lo que 
480
1
60.30
601
70.24
241 =⇒+=+ yyy 
Es decir, cada día, una vaca consume 
1600
1
60.30
480
1
601
60.30
601 =
+
=+ y 
Para x vacas, que consumen todo en 96 días, se cumplirá que 20
1600
1
96
480
1
961
=⇒=
+
x
x
, por lo que 
 
20 vacas se comerían toda la hierba del prado en 96 días 
 
¿Cuál es la sucesión que sigue en la siguiente lista de sucesiones? 
• 4 14 24 30 31 32...... 
• 3 6 7 9 10 11...... 
• 5 6 7 10 15 16........ 
• 1 2 4 5 8 11........ 
 
 
SOLUCIÓN 
Son sucesiones formadas por los números naturales que contienen a cada una de las cinco vocales. 
La primera sucesión es cuAtro, cAtorce, veinticuAtro, treintA, … 
La segunda, trEs, sEis, siEtE, nuEvE, … 
La tercera, cInco, seIs, sIete, dIez, … 
La cuarta, unO, dOs, cuatrO, cincO, … 
Por lo tanto, la última será 
1, 4, 9, 15, 19, 21, … 
 
Un número entero positivo se escribe con tres cifras distintas. 
Obtenemos tres números de dos cifras cada uno suprimiendo la cifra de las centenas, la 
de las decenas y la de las unidades. 
La suma de esos tres números es la mitad del número de tres cifras inicial. ¿Cuál es ese 
número? 
 
 
SOLUCIÓN 
Sea el número cbaabc ++= 10100 . El enunciado nos dice que 
⇒
++=++=+++++⇒=++
2
10100
21120101010
2
cba
cbacbcaba
abc
bcacab 
baccba 420031260 −=⇒=−−⇒ 
De ahí se deduce que 
1. 1=a y 53 ≤≤ b . Como las cifras son distintas sólo cabe que 3=b y 8=c o bien 5=b y 0=c . 
2. 2=a y 98 ≤≤ b . Como las cifras son distintas sólo cabe que 9=b y 4=c 
Por tanto, el número puede ser 
 
138, 150 o 294 
 
¿Cuántas cifras tiene el número N = 4994.51989 ? 
 
 
SOLUCIÓN 
( ) 5105525254 198819881988198999421989994 ×=××=×=×=N . 
Esto es, N es el número formado por la cifra 5 seguida de 1988 ceros. 
Por tanto, 
N tiene 1989 cifras 
 
Un rayo ha partido una antena de comunicaciones que medía 25 metros y la parte 
superior ha quedado con el extremo en el suelo formando un triángulo rectángulo de 15 
metros de base ¿A qué altura se ha roto la antena? 
 
 
SOLUCIÓN 
Si llamamos x a la altura de la parte que ha quedado en pie, aplicando el teorema 
de Pitágoras obtenemos: 
( ) ⇒+−=+⇒−=+ 22222 506252252515 xxxxx 
840022562550 =⇒=−=⇒ xx 
Por tanto, 
 
La antena se ha partido a 8 metros de altura 
 
Un agricultor tenía 5 sacos de patatas y pidió a su hijo que los pesara para llevarlos al 
mercado. 
El hijo, para enredar un poco, los pesó de dos en dos de todas las maneras posibles y 
obtuvo 46, 48, 49, 50, 51, 52, 53, 54, 56 y 57 kg 
 
¿Cuánto pesa cada saco sabiendo que todos los valores son enteros y distintos? 
 
 
SOLUCIÓN 
Vamos nombrar los pesos de los cinco sacos como V , W , X , Y y Z , ordenados de menor a mayor valor. 
Si consideramos los dos primeros los de menos peso, lógicamente se verificará que 46=+WV y, de 
manera similar con los de mayor peso, 57=+ ZY 
En resumen, también deducimos deahí que 1035746 =+=+++ ZYWV 
Por otro lado en las diez pesadas los sacos intervienen cuatro veces cada uno, , por lo que 
( ) 516575654535251504948464 =+++++++++=++++× ZYXWV , por lo que el peso total de 
los sacos será la cuarta parte de ese valor: 129=++++ ZYXWV 
Así, el peso 26103129 =−=X kg, con lo que ya tenemos el peso del saco intermedio. 
Los pesos de los demás oscilarán, lógicamente, entre 2248 =− X y 3056 =− X al no intervenir X ni en 
la primera ni en la última pesada. 
Como todos los sacos tienen distinto peso, los dos primeros deben cumplir 242246 +==+WV (no hay 
más posibilidades lógicas con las condiciones establecidas y obtenidas), con lo que ya tenemos los pesos 
22=V kg y 24=W kg 
Con el mismo razonamiento debe verificarse que 292857 +==+ ZY o que 302757 +==+ ZY 
En el primer caso ( 29,28 == ZY ) debería aparecer, en la lista, el peso 552926 =+=+ YX y no 
aparece, por lo que no puede cumplirse esta posibilidad. 
Por tanto, debe ser ⇒+==+ 302757ZY 27=Y kg y 30=Z kg 
Ya tenemos los pesos de los cinco sacos y es sencillo comprobar, sumando dos a dos, que coinciden las 
sumas con los valores de la lista de pesadas indicada. 
En conclusión, 
 
Los pesos de los sacos son 
22 kg, 24 kg, 26 kg, 27 kg y 30 kg 
 
Un tipógrafo, para enumerar todas las páginas de un libro, ha empleado 2989 dígitos. 
¿Cuántas páginas tiene el libro? 
 
 
SOLUCIÓN 
Hay 9 páginas de una cifra (de 1 a 9), 90 de dos cifras (de 10 a 99), 900 de tres cifras (de 100 a 999), 9000 de 
cuatro cifras (1000 a 9999) que rebasan nuestros datos. 
Para páginas de una cifra necesitaremos 9 dígitos, para páginas de dos cifras necesitaremos 90 x 2 = 180 
dígitos, para páginas de tres cifras necesitaremos 900 x 3 = 2700 dígitos… luego, hasta páginas de de tres 
cifras se usan 9 + 180 + 2700 = 2889 dígitos. 
Hasta los dígitos dados faltan 2989 – 2889 =100 dígitos para indicar páginas de cuatro dígitos, por lo que 
habrá 100/4 = 25 páginas que si empiezan por 1000 acabarán en 1024. 
Por tanto, 
 
El libro tiene 1024 páginas 
 
Una agencia turística ofrece tres tipos de viajes a China: 
• China Panorámica, por 1600 euros/persona 
• China Esencial, por 1700 euros/persona 
• China Pais de Dragón, por 1800 euros/persona 
Una semana la empresa recaudo 20000 euros por la venta de 
esos tipos de viaje. 
¿Cuántos viajes de estos tipos se vendieron, en total, la citada 
semana? 
 
 
SOLUCIÓN 
Llamamos X , Y y Z a la cantidad de viajes vendidos de cada uno de los citados, y en el mismo orden, en 
esa semana. 
Tendremos entonces que 20018171620000180017001600 =++⇒=++ ZYXZYX 
Debe cumplirse también, por los datos indicados, que 120 ≤≤ X , 110 ≤≤ Y y 110 ≤≤ Z 
16
28
12
16
1817200
200181716
ZY
ZY
ZY
XZYX
−−+−−=−−=⇒=++ , y la última fracción debe ser un 
número entero. 
Nombramos ahora al valor entero 
2
84
2
168
1682
16
28 Y
t
Yt
ZtZY
ZY
t −−=−−=⇒−=+⇒−−= , por lo 
que Y debe ser un número par. 
Estudiamos ahora las posibilidades, siendo la cantidad de viajes siempre enteros y positivos o nulos: 
Y t 
2
84
Y
tZ −−= tZYX +−−= 12 ZYX ++ 
0 0 4 8 12 
0 -1 12 -1 Imposible 
2 0 3 7 12 
2 -1 11 -2 Imposible 
4 0 2 6 12 
4 -1 10 -3 Imposible 
6 0 1 5 12 
6 -1 9 -4 Imposible 
8 0 0 4 12 
8 -1 8 -5 Imposible 
10 0 -1 3 Imposible 
10 -1 7 -6 Imposible 
 
Todas las posibilidades admisibles conducen al mismo resultado, por lo que se deduce que 
 
12 viajes se contrataron en esa semana 
 
 Tres amigos intentan acertar el número de judías contenidas en un tarro de cristal. 
José dice que hay 260, María cree que hay 274 y Carmen propone que hay 234 judías. 
Ninguno ha acertado. Uno se ha equivocado en 9, otro en 17 y un tercero en 31 judías. 
¿Cuántas judías contiene el tarro? 
 
 
SOLUCIÓN 
La cantidad de judías del tarro se obtendrá según los valores de las cantidades 
propuestas más/menos los desfases respecto a la cantidad correcta. 
Calculamos las diferencias entre la cantidad menor y las restantes y comparamos el resultado con los 
valores de los desfases: 
• 260 – 234 = 26 = 9 + 17 
• 274 – 234 = 40 = 9 + 31 
Que nos invita a pensar que José y María se han excedido y Carmen ha dado el resultado por defecto. 
Al comprobar la tercera diferencia, 274 – 260 = 14 = 31 – 17, confirmamos el hecho, por lo que se cumple 
que 234 + 9 = 260 – 17 = 274 – 31 = 243 y se deduce que 
 
El tarro contiene 243 judías 
 
Hay dos trozos de mecha que se consumen, cada uno de ellos 
al prenderlos, en un minuto. 
¿Cómo medir 45 segundos con ellos si no se pueden cortar y 
su velocidad de quemado no es uniforme? 
 
 
SOLUCIÓN 
Tomamos la primera mecha y la encendemos por los dos extremos. A la vez, encendemos la segunda 
mecha por un extremo. 
La primera se consume en 30 segundos. En ese instante encendemos el otro extremo de la segunda mecha. 
Ésta (que ya llevaba 30 segundos consumiéndose) se consumirá, entonces, en 15 segundos más, logrando 
nuestro propósito. 
 
Manolo, Paco y Tobías pusieron el dinero que tenían encima de la 
mesa y empezaron a jugar a un juego en el que el que pierde divide el 
dinero que tiene en dos partes iguales y se lo entrega a los otros dos 
jugadores. 
Hicieron seis jugadas y, al final, Manolo se quedó con 11 euros, Paco 
con 3 euros y Tobías sin nada. 
¿Con cuánto dinero empezó cada uno? 
 
 
SOLUCIÓN 
Es uno de los problemas en los que hay que empezar a pensar desde el final e ir hacia atrás, pero antes hay 
que considerar que el dinero ni aparece ni desaparece, por lo que hay siempre 14 euros en juego. 
Además, el jugador que tiene menos, en cada jugada, es el que perdió en la jugada anterior… y recibe y 
tiene (al llegar a la jugada sin nada) la mitad de lo que se reparte en la jugada actual. 
Es evidente que Tobías fue el que perdió en la última jugada (: la sexta), pues se quedó sin nada y siempre 
se queda así el que pierde. Además, el que menos tiene (pero tiene algo) ha perdido el juego anterior (en 
este caso, Paco), pues recibe lo que ahora tiene sin haber tenido nada y es la mitad de lo que tenía Tobías. 
En conclusión, al finalizar la quinta jugada, Tobías tenía 6 euros (que repartió por mitades al perder la 
sexta), Paco no tenía nada (había repartido, al perder, 12 euros) y Manolo tenía 8 euros. 
Al acabar la cuarta jugada, que perdió Tobías, éste no tenía nada (había repartido 4 euros, 2 a cada uno), 
Paco tenía 12 euros y Manolo 2 euros… y así sucesivamente… 
Hacemos un esquema, en forma de tabla, para ver como transcurrió todo: 
Jugada Manolo Paco Tobías 
6ª =+ 38 11 euros =+ 30 3 euros 0 euros (Pierde) Tobías ha repartido 6 euros ( 3 + 3 ) 
5ª =+ 62 8 euros 0 euros (Pierde) =+ 60 6 euros Paco ha repartido 12 euros ( 6 + 6 ) 
4ª =+ 20 2 euros =+ 210 12 euros 0 euros (Pierde) Tobías ha repartido 4 euros ( 2 + 2 ) 
3ª 0 euros (Pierde) =+ 46 10 euros =+ 40 4 euros Manolo ha repartido 8 euros ( 4 + 4 ) 
2ª =+ 62 8 euros =+ 60 6 euros 0 euros (Pierde) Tobías ha repartido 12 euros ( 6 + 6 ) 
1ª =+11 2 euros 0 euros (Pierde) =+111 12 euros Paco ha repartido 2 euros (1 + 1) 
 1 euro 2 euros 11 euros Situación inicial 
 
 
Manolo empezó con 1 euro, 
Paco con 2 euros y 
Tobías con 11 euros 
 
 
Teniendo en cuenta que a letras distintas les corresponden dígitos diferentes, descifrar esta suma tan 
evidente: 
 
 
SOLUCIÓN 
De la primera columna se deduce que E debe ser una cifra par y, además, al observar la primera y cuarta 
columnas de la suma es evidente que, en la última, se arrastra cifra por lo que debe ser 4>E 
Veamos las posibilidades: 
• 6=E 
o Entonces, 273 ==⇒= OyDS . De ahí solo cabe la posibilidad de 84 == CyI 
• 8=E 
o Entonces, 94 =⇒= DS , y puede ser 
� 216 ==⇒= CyIO 
� 7=O , y 
• 05 == CyI , o 
• 26 == CyI 
Por lo tanto hay cuatro soluciones posibles: 
 
 
 
Diez amigos ganan en la ruleta diferentes cantidades de dinero (siempre valores 
enteros) y deciden que el quemás ha ganado dará dinero a los restantes de 
modo que todos ellos (los restantes) tripliquen el dinero obtenido por cada uno. 
Una vez hecho esto observan que las cantidades son las mismas, solo cambia lo 
que tiene cada uno de ellos de modo tal que el que más ha ganado es el que 
menos tiene. 
Si entre todos ellos han ganado 1180960 euros, ¿cuánto dinero tenian 
inicialmente? 
 
 
SOLUCIÓN 
Si las cantidades, antes y después del reparto, son las mismas y todas (menos la mayor) se han triplicado, 
dichas cantidades deben estar en una progresión geométrica de razón 3 . 
Si llamamos x a la menor de ellas, tenemos que 11809603...2793 9 =+++++ xxxxx . De la suma resulta 
que 40118096029524
13
1310 =⇒==
−
−
xxx . 
Por tanto, 
 
Tenían, de menor a mayor, 
40 euros, 
120 euros, 
360 euros, 
1080 euros, 
3240 euros, 
9720 euros, 
29160 euros, 
87480 euros, 
262440 euros y 
787320 euros 
 
Si el número de mi casa fuera múltiplo de 3 sería un número entre 50 y 59. 
Si no fuera múltiplo de 4, estaría comprendido entre 60 y 69. 
Si no fuese múltiplo de 6, sería un número entre 70 y 79. 
¿Cuál es el número de mi casa? 
 
 
SOLUCIÓN 
Está claro que el número debe estar comprendido entre 50 y 79, pues de lo contrario debería ser múltiplo 
de 6 y no de 3, lo cual es imposible. 
Por la primera condición, si fuera múltiplo de 3 podría ser el 51, el 54 o el 57. 
En ese caso, por la segunda condición, debería ser múltiplo de 4 (al estar fuera del ámbito entre 60 y 69) y 
en ningún caso se cumple para los tres números anteriores. 
Por tanto, no es múltiplo de 3, ni (en consecuencia) tampoco de 6 y debe estar entre 70 y 79. Y debe ser 
también múltiplo de 4 por la segunda afirmación. 
El único número, entre 70 y 79, que cumple esas condiciones es el 76 
 
En conclusión, 
El número de mi casa es el 76 
 
Un sultán dejó a sus hijas un cierto número de perlas y determinó que la 
división se hiciera del siguiente modo: 
La hija mayor se quedaría con una perla y un séptimo de lo que quedara. 
La segunda hija recibiría dos perlas y un séptimo de lo restante, la tercera 
joven recibiría tres perlas y un séptimo de lo que quedara. Y así 
sucesivamente. 
Las hijas más jóvenes presentaron demanda ante el juez alegando que, por 
este complicado sistema de división, resultaban fatalmente perjudicadas. 
El juez, que era hábil en la resolución de problemas, respondió 
prestamente que las reclamantes estaban engañadas y que la división 
propuesta por el viejo sultán era justa y perfecta. 
Y tenía razón. Hecha la división, cada una de las hermanas recibió el mismo 
número de perlas. 
¿Cuántas perlas había?, ¿cuántas eran las hijas del sultán? 
 
 
SOLUCIÓN 
Llamemos x al número de perlas a repartir. 
Según el enunciado, la hija mayor se queda con 
7
6
7
1
1
+=−+ xx perlas. Quedan, entonces, 
7
66
7
6 −=+− xxx perlas para repartir con las demás. 
La segunda hija se queda con 
49
786
49
206
2
7
2
7
66
2
+=−+=
−−
+ xx
x
 perlas. 
Como ambas hijas se quedan, según el juez, con la misma cantidad de perlas, se verifica que 
36786427
7
786
6
49
786
7
6 =⇒+=+⇒+=+⇒+=+ xxxxxxx perlas son las que el sultán repartió 
entre sus hijas. 
A partir de aquí, el reparto se hace elemental: la mayor y la segunda se quedan, cada una, con 6
7
636 =+ 
perlas y se deduce que habrá seis hijas 
Vamos a comprobar que las demás también se quedarán con la misma cantidad: 
Después de las dos primeras quedan 24 perlas. La tercera hija se queda con 6
7
324
3 =−+ perlas y quedan 
18 perlas. La cuarta se queda con 6
7
418
4 =−+ perlas y quedan 12 perlas. La quinta se queda con 
6
7
512
5 =−+ perlas y quedan 6 perlas. Por último, la sexta hija recibe 6
7
66
6 =−+ perlas también, 
acabándose el reparto. 
En conclusión, 
El sultán repartió 36 perlas 
de manera equitativa entre sus 6 hijas 
 
Sobre una mesa hay 7 dados, uno encima del otro, formando una torre de siete dados de 
altura. 
¿Cuántos puntos hay a la vista sabiendo que la cara que está más arriba de la torre es un 5? 
 
 
SOLUCIÓN 
Las caras opuestas de un dado siempre suman 7, por lo que las caras ocultas de los seis dados inferiores 
sumarán 7 x 6 = 42 puntos. 
El dado superior tiene el 5 como cara descubierta, por lo que la cara tapada será la de 2 puntos. En total 
habrá 42 + 2 = 44 puntos ocultos. 
La suma de las seis caras de de cada dado es de 21 puntos, por lo que hay, en total, 21 x 7 = 147 puntos. Y 
como hay 44 ocultos, 
 
Hay 103 puntos visibles en la torre de dados 
 
Un agricultor tiene un terreno, en forma cuadrada, de 10000 metros 
cuadrados. 
Lo divide mediante tres rectas: una diagonal y otras dos, paralelas entre 
sí, uniendo cada vértice libre con el punto medio del lado opuesto. 
Queda así dividido el terreno en seis trozos. 
¿Cuál es valor del área de uno de los dos trozos de mayor superficie? 
 
 
SOLUCIÓN 
Se observa claramente que, al realizar la construcción, se 
obtienen seis trozos que son simétricos y de igual 
superficie dos a dos (: se han nombrado con las mismas 
letras). 
Es evidente que, dada la superficie cuadrada y su valor, el 
lado del terreno es de 10010000= metros, y la 
mitad del lado mide 50 metros. 
Así, las superficies mayores abarcan 
( )CBCCBBAA +×−=+++−=+ 210000)''(10000'
metros cuadrados. 
Como CB + es un triángulo rectángulo cuyos 
catetos miden 100 y 50 metros, su área es 
2500
2
50100 =×=+ CB metros cuadrados. 
Entonces, 50002500210000' =×−=+ AA metros cuadrados 
Por lo tanto, al ser los dos trozos iguales, 
 
Los trozos de mayor superficie tienen, cada uno, 
2500 metros cuadrados de área 
 
En un torneo de fútbol han participado 4 equipos: Aviación, Barcino, Celtas y 
Deportivo, y todos los equipos se enfrentaron una vez entre sí. El campeonato 
finalizó con la siguiente clasificación: 
 Puntos Goles favor Goles Contra 
1. Aviación 5 3 1 
2. Barcino 5 4 3 
3. Celtas 3 2 2 
4. Deportivo 1 0 3 
 
Determinar los resultados de todos los partidos jugados, sabiendo que cada partido ganado otorga tres 
puntos y cada empate otorga un punto. 
 
 
SOLUCIÓN 
Al ser un campeonato en el que los cuatro juegan entre sí una sola vez, se han jugado todas las 
combinaciones de cuatro elementos tomados dos a dos: 6
!2!2
!4
2
4
2,4 =×
=





=C partidos. Los indicamos: 
a) Aviación – Barcino b) Celtas – Deportivo 
c) Aviación – Celtas d) Barcino – Deportivo 
e) Deportivo – Aviación f) Celtas – Barcino 
El Deportivo solo obtuvo un punto, por lo que empató un partido y perdió dos. El partido empatado tuvo de 
resultado 0 – 0. 
Aviación y Barcino, al llegar a cinco puntos, debieron ganar un partido y empatar dos cada uno. Por tanto, 
Celtas debió empatar uno o tres (para mantener la paridad de los empates) pero, al tener tres puntos, 
fueron tres (todos) los que empató. 
Se sigue entonces, vista la tabla de goles, que el partido b) Celtas – Deportivo quedó 0 – 0. 
Aviación y Barcino ganaron al Deportivo (único que perdió partidos) y Barcino por un gol, por lo que 
Aviación le ganó por dos según la tabla de goles. 
Evidentemente, como el Deportivo no metió ningún gol, el partido e) Deportivo – Aviación finalizó 0 – 2 y 
el partido d) Barcino – Deportivo, 1 – 0. 
Quedan tres empates por determinar. Viendo la sección de goles a favor y en contra, queda claro que solo 
pudo suceder que el partido a) Aviación – Barcino quedase 1 –1, el partido c) Aviación – Celtas, 0 – 0, y el 
partido f) Celtas – Barcino, 2 – 2. 
En resumen, los resultados fueron: 
 
Aviación, 1 – Barcino, 1 Celtas, 0 – Deportivo, 0 
Aviación, 0 – Celtas, 0 Barcino, 1 – Deportivo, 0 
Deportivo, 0 – Aviación, 2 Celtas, 2 – Barcino, 2 
 
 
En una excursión al campo me encuentro con un granjero. Al preguntarle 
qué número de animales tiene, me dice: "Todos son caballos menos seis, 
todos son cerdos menos seis y todos son patos menos seis" 
 
¿Cuántos animales tiene el granjero?

Otros materiales