Logo Studenta

class16

¡Este material tiene más páginas!

Vista previa del material en texto

Introducción a la inferencia estadística
Michael Wiper
Departamento de Estadística
Universidad Carlos III de Madrid
M. Wiper Estadística 1 / 15
Objetivo
Introducir la distribución en el muestreo y los conceptos básicos de la inferencia
estadística.
M. Wiper Estadística 2 / 15
Idea de la inferencia estadística
Estadística descriptiva: la edad media de una muestra de 36 personas multadas
por exceso de velocidad es 25.
Modelo Probabilístico: la distribución de edades de la gente que conducen
demasiado rápido es normal con media µ y varianza σ2.
Inferencia: la muestra proporciona evidencia para rechazar la hipótesis de que
µ < 20.
M. Wiper Estadística 3 / 15
Idea de la inferencia estadística
Estadística descriptiva: la edad media de una muestra de 36 personas multadas
por exceso de velocidad es 25.
Modelo Probabilístico: la distribución de edades de la gente que conducen
demasiado rápido es normal con media µ y varianza σ2.
Inferencia: la muestra proporciona evidencia para rechazar la hipótesis de que
µ < 20.
M. Wiper Estadística 3 / 15
Idea de la inferencia estadística
Estadística descriptiva: la edad media de una muestra de 36 personas multadas
por exceso de velocidad es 25.
Modelo Probabilístico: la distribución de edades de la gente que conducen
demasiado rápido es normal con media µ y varianza σ2.
Inferencia: la muestra proporciona evidencia para rechazar la hipótesis de que
µ < 20.
M. Wiper Estadística 3 / 15
La distribución en el muestreo
Distintas muestras tienen distintas medias.
Antes de tomar la muestra, la media muestral es una variable.
Como cualquiera variable, tiene su distribución de probabilidad.
M. Wiper Estadística 4 / 15
La distribución de la media
Supongamos que la verdadera media y varianza de la población son µ y σ2. Luego:
E [X̄ ] = µ
V [X̄ ] =
σ2
n
donde n es el tamaño de la muestra.
Entonces, la media muestral es un estimador insesgado de la media poblacional.
Más grande que sea la muestra, menos probable es que la media muestral esté
lejos de la media poblacional.
Para muestras razonablemente grandes, se puede suponer que la distribución de la
media es normal:
X̄ ∼ N
(
µ,
σ2
n
)
.
M. Wiper Estadística 5 / 15
Estimación puntual
La media muestral X̄ es un buen estimador de la media poblacional, µ.
Dada la muestra, x̄ es una estimación razonable de la media poblacional, µ.
Una estimación razonable de la edad media de la gente que conducen demasiado
rápido es 25.
La proporción de éxitos en una muestra, p̂ es un buen estimador de la
probabilidad de éxito.
La cuasi-varianza muestral S2 es un buen estimador de la varianza poblacional σ2.
M. Wiper Estadística 6 / 15
Estimación puntual
La media muestral X̄ es un buen estimador de la media poblacional, µ.
Dada la muestra, x̄ es una estimación razonable de la media poblacional, µ.
Una estimación razonable de la edad media de la gente que conducen demasiado
rápido es 25.
La proporción de éxitos en una muestra, p̂ es un buen estimador de la
probabilidad de éxito.
La cuasi-varianza muestral S2 es un buen estimador de la varianza poblacional σ2.
M. Wiper Estadística 6 / 15
Estimación puntual
La media muestral X̄ es un buen estimador de la media poblacional, µ.
Dada la muestra, x̄ es una estimación razonable de la media poblacional, µ.
Una estimación razonable de la edad media de la gente que conducen demasiado
rápido es 25.
La proporción de éxitos en una muestra, p̂ es un buen estimador de la
probabilidad de éxito.
La cuasi-varianza muestral S2 es un buen estimador de la varianza poblacional σ2.
M. Wiper Estadística 6 / 15
Estimación por intervalos
Además de una estimación puntual, es importante mostrar el grado de
incertidumbre en la estimación. Una manera de hacerlo es a través de un intervalo.
Queremos conseguir un intervalo que, con bastante seguridad contendrá el
verdadero valor µ.
Problema:
Un intervalo muy ancho es muy impreciso y proporciona poca información.
Estoy casi seguro que la edad media de los conductores rápidos es entre 16 y 100.
Un intervalo muy estrecha puede facilmente no ser correcto.
Estoy poco seguro que la edad media es entre 24,9 y 25,1 años
M. Wiper Estadística 7 / 15
Estimación por intervalos
Además de una estimación puntual, es importante mostrar el grado de
incertidumbre en la estimación. Una manera de hacerlo es a través de un intervalo.
Queremos conseguir un intervalo que, con bastante seguridad contendrá el
verdadero valor µ.
Problema:
Un intervalo muy ancho es muy impreciso y proporciona poca información.
Estoy casi seguro que la edad media de los conductores rápidos es entre 16 y 100.
Un intervalo muy estrecha puede facilmente no ser correcto.
Estoy poco seguro que la edad media es entre 24,9 y 25,1 años
M. Wiper Estadística 7 / 15
Intervalos de con�anza
El enfoque estadístico es lo siguiente:
Fijamos una nivel de con�anza, por ejemplo 95% o 99%.
Fijamos funciones L(X1, ...,Xn),U(X1, ...,Xn) tal que P(L < µ < U) = 95%
(o 99%).
Dados los datos de la muestra, el intervalo es (L(x1, ..., xn),U(x1, ..., xn)).
¾Cómo interpretar esto?
Si construimos muchos intervalos de esta manera, entonces 95% de los intervalos
que construimos contendrán la verdadera media µ. ½Un 95% de las veces,
hacemos bien!
¾Cómo no interpretar esto?
La probabilidad de que µ está dentro del intervalo que acabo de construir es igual
a 95%.
M. Wiper Estadística 8 / 15
Intervalos de con�anza
El enfoque estadístico es lo siguiente:
Fijamos una nivel de con�anza, por ejemplo 95% o 99%.
Fijamos funciones L(X1, ...,Xn),U(X1, ...,Xn) tal que P(L < µ < U) = 95%
(o 99%).
Dados los datos de la muestra, el intervalo es (L(x1, ..., xn),U(x1, ..., xn)).
¾Cómo interpretar esto?
Si construimos muchos intervalos de esta manera, entonces 95% de los intervalos
que construimos contendrán la verdadera media µ. ½Un 95% de las veces,
hacemos bien!
¾Cómo no interpretar esto?
La probabilidad de que µ está dentro del intervalo que acabo de construir es igual
a 95%.
M. Wiper Estadística 8 / 15
Un intervalo de con�anza para la media
Ahora matemáticas para los interesados ...
X̄ ∼ N
(
µ,
σ2
n
)
X̄ − µ
σ/
√
N
∼ N(0, 1)
P
(
−1,96 < X̄ − µ
σ/
√
n
< 1,96
)
= 0,95
P
(
X̄ − 1,96σ/
√
n < µ < X̄ + 1,96σ/
√
n
)
= 0,95
... y la parte útil para los no interesados en matemáticas
Dada una muestra, x1, ..., xn, un intervalo de 95% de con�anza para la media
poblacional µ es
x̄ ± 1,96σ/
√
n
M. Wiper Estadística 9 / 15
Un intervalo de con�anza para la media
Ahora matemáticas para los interesados ...
X̄ ∼ N
(
µ,
σ2
n
)
X̄ − µ
σ/
√
N
∼ N(0, 1)
P
(
−1,96 < X̄ − µ
σ/
√
n
< 1,96
)
= 0,95
P
(
X̄ − 1,96σ/
√
n < µ < X̄ + 1,96σ/
√
n
)
= 0,95
... y la parte útil para los no interesados en matemáticas
Dada una muestra, x1, ..., xn, un intervalo de 95% de con�anza para la media
poblacional µ es
x̄ ± 1,96σ/
√
n
M. Wiper Estadística 9 / 15
Un intervalo de con�anza para la media
Ahora matemáticas para los interesados ...
X̄ ∼ N
(
µ,
σ2
n
)
X̄ − µ
σ/
√
N
∼ N(0, 1)
P
(
−1,96 < X̄ − µ
σ/
√
n
< 1,96
)
= 0,95
P
(
X̄ − 1,96σ/
√
n < µ < X̄ + 1,96σ/
√
n
)
= 0,95
... y la parte útil para los no interesados en matemáticas
Dada una muestra, x1, ..., xn, un intervalo de 95% de con�anza para la media
poblacional µ es
x̄ ± 1,96σ/
√
n
M. Wiper Estadística 9 / 15
¾De dónde sale 1,96?
M. Wiper Estadística 10 / 15
¾De dónde sale 1,96?
M. Wiper Estadística 11 / 15
¾Qué sería el número con 90% o 99% de
con�anza?
M. Wiper Estadística 12 / 15
Ejemplo
Supongamos que sabemos que la desviación típica de las edades de los
conductores que corren demasiado es de 5 años.
Luego un intervalo de 95% de con�anza para la verdadera edad media de
conductores rápidos es
25± 1,96× 5/
√
36 = 25± 1,633 = (23,37, 26,63).
¾Cómo sería un intervalo de 90% de con�anza?
25± 1,645× 5/
√
36 = 25± 1,371 = (23,63, 26,37).
¾O de 99%?
25± 2,576× 5/
√
36 = (22,85, 27,15)
Más con�anza implica un intervalo más ancho, porque tenemos más con�anza en
quecontenga la verdadera media. Menos con�anza implica un intervalo menos
ancho donde tenemos menos seguridad de que contenga la verdad.
M. Wiper Estadística 13 / 15
Ejemplo
Supongamos que sabemos que la desviación típica de las edades de los
conductores que corren demasiado es de 5 años.
Luego un intervalo de 95% de con�anza para la verdadera edad media de
conductores rápidos es
25± 1,96× 5/
√
36 = 25± 1,633 = (23,37, 26,63).
¾Cómo sería un intervalo de 90% de con�anza?
25± 1,645× 5/
√
36 = 25± 1,371 = (23,63, 26,37).
¾O de 99%?
25± 2,576× 5/
√
36 = (22,85, 27,15)
Más con�anza implica un intervalo más ancho, porque tenemos más con�anza en
que contenga la verdadera media. Menos con�anza implica un intervalo menos
ancho donde tenemos menos seguridad de que contenga la verdad.
M. Wiper Estadística 13 / 15
Ejemplo
Supongamos que sabemos que la desviación típica de las edades de los
conductores que corren demasiado es de 5 años.
Luego un intervalo de 95% de con�anza para la verdadera edad media de
conductores rápidos es
25± 1,96× 5/
√
36 = 25± 1,633 = (23,37, 26,63).
¾Cómo sería un intervalo de 90% de con�anza?
25± 1,645× 5/
√
36 = 25± 1,371 = (23,63, 26,37).
¾O de 99%?
25± 2,576× 5/
√
36 = (22,85, 27,15)
Más con�anza implica un intervalo más ancho, porque tenemos más con�anza en
que contenga la verdadera media. Menos con�anza implica un intervalo menos
ancho donde tenemos menos seguridad de que contenga la verdad.
M. Wiper Estadística 13 / 15
Ejemplo
Supongamos que sabemos que la desviación típica de las edades de los
conductores que corren demasiado es de 5 años.
Luego un intervalo de 95% de con�anza para la verdadera edad media de
conductores rápidos es
25± 1,96× 5/
√
36 = 25± 1,633 = (23,37, 26,63).
¾Cómo sería un intervalo de 90% de con�anza?
25± 1,645× 5/
√
36 = 25± 1,371 = (23,63, 26,37).
¾O de 99%?
25± 2,576× 5/
√
36 = (22,85, 27,15)
Más con�anza implica un intervalo más ancho, porque tenemos más con�anza en
que contenga la verdadera media. Menos con�anza implica un intervalo menos
ancho donde tenemos menos seguridad de que contenga la verdad.
M. Wiper Estadística 13 / 15
Cálculo con Excel
Excel tiene una función para calcular automaticamente la parte para sumar y
restar de la media para construir el intervalo. α = 1− nivel de con�anza.
Luego el intervalo es 25± 1,633 = (23,37, 26,63).
M. Wiper Estadística 14 / 15
Resumen y siguiente sesión
En este clase, hemos introducido la estimación puntual y por intervalos.
En la siguiente sesión, vemos más ejemplos y como estimar un intervalo de
con�anza para una proporción.
M. Wiper Estadística 15 / 15

Continuar navegando

Materiales relacionados

104 pag.
34 pag.
GUIA-DE-ESTADISTICA-2

User badge image

Aprenda aquí

218 pag.
ARMAND~1 - José Guerrero

User badge image

Desafio PASSEI DIRETO

35 pag.
ESTADÍSTICA 2 MODULO 1

Vicente Riva Palacio

User badge image

Sergio Durán