Logo Studenta

Cuaderno de prácticas TF I

¡Este material tiene más páginas!

Vista previa del material en texto

0UNIVERSIDAD DEL PAIS 
VASCO 
FACULTAD DE FARMACIA 
Farmacia y Tecnología Farmacéutica 
Paseo de la Universidad nº7 
01006 VITORIA 
eman ta zabal zazu 
EUSKAL HERRIKO UNIBERTSITATEA 
FARMAZI FAKULTATEA 
Farmazi eta Farmazi Teknologia 
Unibertsitateko Pasealekua zk.7 
01006 GASTEIZ 
PRÁCTICAS DE 
TECNOLOGÍA 
FARMACÉUTICA I 
Begoña Calvo Hernáez
b.calvo@ehu.eus
3 
Fase externa o dispersante 
PRÁCTICA Nº1 
PREPARACIÓN DE EMULSIONES 
Las emulsiones son sistemas dispersos heterogéneos constituidos por dos fases líquidas 
inmiscibles. Generalmente, una de las fases queda dividida en partículas aisladas en el seno de 
la otra, constituyendo la fase interna o fase dispersa. La fase que rodea a estas partículas, que 
no ha perdido su continuidad, se denomina fase externa o fase dispersante. 
Se representa de la siguiente forma: 
-O/W ó O/A = aceite en H2O, fase externa acuosa. 
-W/O ó A/O = H2O en aceite, fase externa oleosa. 
Para la obtención de una emulsión estable se necesita al margen de la fase acuosa y oleosa un 
tercer componente: el agente emulsificante, que actúa disminuyendo el valor de la tensión 
interfacial entre las dos fases inmiscibles. Las moléculas del agente emulsificante orientan sus 
grupos polares hacia la fase acuosa y sus restos apolares hacia la fase oleosa,.formando una 
película interfacial que tiene afinidad por las dos fases (acuosa y oleosa), 
En 1949, Griffin introdujo el concepto de HLB, que es una forma sencilla de expresar 
numéricamente el balance hidrofilia-lipofilia de una molécula, es decir, es un número 
Fase interna o dispersa 
4 
convencional que expresa la atracción que la molécula presenta por la fase oleosa y por la fase 
acuosa. Para los agentes emulsificantes esta escala va desde 1 hasta 20, aumentando la 
hidrofilia cuando el valor de HLB sea mayor. 
HLB 
1 - 3 antiespumantes 
3 - 8 emulgentes W/O 
8 - 16 emulgentes O/W 
16 - 20 solubilizantes 
Lipófila 
Hidrófila 
El HLB es un parámetro físico-químico con propiedad aditiva, es decir, que cumple la Ley de 
mezclas. Si tenemos dos moléculas A y B cuyos HLB respectivamente son X e Y, el HLB de 
la mezcla resultante será: 
A . X+ B . Y= (A+B) . Z 
siendo Z el HLB de la mezcla. 
La experiencia ha demostrado que cada componente graso que se desea emulsionar requiere 
un emulsificante de HLB determinado para obtener un grado de emulsión óptimo. 
Desde el punto de vista práctico el primer problema con el que nos vamos a enfrentar a la 
hora de preparar una emulsión es seleccionar el agente emulsificante y para ello es preciso 
conocer el HLB que se requiere para formar una emulsión estable. 
5 
DETETERMINACION DEL HLB REQUERIDO PARA EMULSIONAR PARAFINA 
LIQUIDA 
Se parte de dos emulgentes Span 85 y Tween 60 cuyos HLB son respectivamente 1,8 y 14,9. 
Disponer 9 tubos con diferentes proporciones de los emulgentes tal como indica la tabla: 
nºde tubo 
gotas 
1 2 3 4 5 6 7 8 9 
Span 85 
Tween 60 
Parafina 
líquida 
H2O 
9 
1 
8 
2 
7 
3 
6 
4 
5 4 
5 6 
2 ml en cada tubo 
8 ml en cada tubo 
3 
7 
2 
8 
1 
9 
(1 gota 0,1 mL) 
La cantidad total de mezcla emulgente es constante en todos los tubos y también el % de fase 
acuosa y oleosa. 
Para facilitar la correcta homogenización de estos tubos, se deben colocar tapados en un vaso 
con agua al baño maría. Al cabo de unos minutos agitar todos los tubos a la vez. 
Los tubos cuyo HLB de la mezcla emulgente diste mucho del HLB requerido para emulsionar 
la parafina líquida y el agua, presentarán una rápida separación de fases. Por el contrario los 
tubos más próximos al HLB requerido presentan una emulsión algo más estable en el tiempo, 
encontrándose siempre una más duradera que las demás. 
Aplicándose la Ley de mezclas a las proporciones de emulgente del tubo de máxima 
estabilidad, conoceremos el HLB de la mezcla. 
ml de Tween 60 . 14,9 + ml de Span 85 . 1,8 = 1 . Z 
Z = HLB de la mezcla. 
6 
El HLB resultante de la mezcla más estable de la serie coincidiría con el HLB requerido para 
emulsionar la parafina líquida. 
PREPARACIÓN DE LA EMULSIÓN 
Preparar 25 g de emulsión constituida por: 
Parafina líquida ------------------------------- 35 g 
Emulsificante -------------------------------- 10 g 
H2O c.s.p. ---------------------------------- 100 g 
Calentar al baño maría los componentes de la fase oleosa e incorporar el emulsificante de 
HLB más bajo. Al mismo tiempo calentar la fase acuosa e incorporar el emulsificante de HLB 
más elevado. Mezclar ambas fases en un mortero teniendo la precaución de añadir la fase 
acuosa sobre la oleosa con agitación continua. Este procedimiento es llamado de inversión 
de fases, y en este caso nos permite obtener una emulsión de O/W. El H2O se añade 
lentamente y con agitación, por lo que al principio se forma una emulsión W/O poco estable. 
A medida que se va adicionando la fase acuosa se produce la inversión de la emulsión que se 
transforma en una de tipo O/W. 
COMPROBACIÓN DEL SIGNO DE LA EMULSIÓN 
a) Método de la gota: una gota de emulsión se coloca en 30 ml aproximadamente de H2O. Si
después de una ligera agitación la gota difunde homogéneamente la emulsión es de tipo O/W. 
Si la gota queda unida sobre la superficie del H2O, la emulsión es de tipo W/O. 
b) Método de los colorantes: se colocan unos gramos de emulsión en una cápsula, se añade 1
gota de solución de azul de metileno (colorante acuoso). Mezclar suave y brevemente con un 
agitador, la fase externa de la emulsión será acuosa si la mezcla resultante es homogénea. 
Repetir la experiencia con solución de Sudan III (colorante oleoso). 
7 
PREPARACIÓN DE UNA CREMA 
Las cremas son emulsiones semisólidas que contienen principios activos disueltos o en 
suspensión en la fase acuosa u oleosa. La mayor parte de las cremas son emulsiones de aceite 
en agua (O/W) aunque también se preparan cremas de agua en aceite (W/O). 
En la preparación de una crema además de utilizar una fase acuosa y una oleosa se debe 
añadir también un emulgente. Las características que debe cumplir un emulgente son: 
- Ser tensioactivo: disminuir la tensión interfacial entre ambas fases y conseguir con poca 
energía un alto grado de dispersión. 
- Formar una película interfacial adecuada: los emulgentes que cumplen esta condición se 
consideran también buenos estabilizadores, pues evitan la coalescencia de la emulsión. 
Si la elección del emulgente es correcta y se utilizan las cantidades adecuadas, éste forma una 
película monomolecular en empalizada ocupando la superficie interfacial existente. 
En líneas generales la preparación de cremas consiste en dividir los constituyentes 
hidrosolubles y liposolubles en dos grupos, calentando independientemente las 2 fases a 50- 
70°C, no siendo conveniente sobrepasar los 75ºC, ya que además de incrementarse la 
hidrólisis y oxidación, puede perderse agua por evaporación. A continuación se incorpora 
lentamente la fase acuosa sobre la oleosa agitando hasta su enfriamiento. El agua utilizada en 
la preparación de las cremas debe ser destilada, no siendo aconsejable utilizar agua corriente 
ya que las sales que contiene pueden alterar con el tiempo la estabilidad de la emulsión. 
Además de la elección correcta del emulgente y de la incorporación de los componentes en la 
fase adecuada, otro factor que tiene importancia es el modo de preparación. Así, en 
determinados casos un vertido rápido de una fase sobre la otra puede originar la ruptura o la 
no formación de la emulsión. 
Esta parte de la práctica trata de la preparación de una crema que contiene como principio 
activo el ácido salicílico. 
8 
FÓRMULA COMPOSICIÓN CENTESIMAL 
Monoestearato de glicerilo 10 g 
Miristato de isopropilo 5 g 
Glicerina 15 g 
Ácido salicílico 2 g 
Polisorbato 80 (Tween 80) 2 g 
H2O desionizada csp 100 g 
Preparar 40 gramos. 
. PREPARACIÓN 
- Calentar al baño maría a 70°C el monoestearato de glicerilo, miristato deisopropilo y Tween 80. 
- Por separado, disolver la glicerina en H2O y calentar a 75°C 
- Incorporar en el mortero la fracción acuosa sobre la oleosa y agitar hasta que se enfríe totalmente. 
- Obtenida la emulsión, incorporar el ácido salicílico pulverizado y mezclar hasta obtener una 
crema homogénea. 
Una vez obtenida la crema se envasa en un tubo, cerrándolo con la ayuda de una espátula. 
ln Co 
K1 
PRÁCTICA Nº 2 
ESTABILIDAD DE MEDICAMENTOS EN DISOLUCIÓN 
Dentro de los estudios de estabilidad de medicamentos, dos de los aspectos que encierran 
mayor interés son los relativos al análisis de la cinética de los procesos de degradación y a la 
evaluación del efecto de la temperatura sobre la velocidad de degradación. Este último 
constituye la base de los denominados estudios acelerados de estabilidad. 
Orden de reacción 
Las reacciones de degradación de los medicamentos siguen la ley de acción de masas y se 
ajustan a cinéticas de orden cero, de orden uno y, menos frecuentemente, de orden superior, 
dependiendo de la naturaleza y de la concentración de principio activo. 
Co 
En las reacciones de orden cero la velocidad de 
degradación dC/dt es constante: 
dC 
ko 
dt 
Ko 
Tiempo 
Siendo ko la constante de velocidad de degradación. 
Si Co es la concentración inicial de medicamento, la 
ecuación anterior en forma integrada será 
Por lo tanto, una representación de las concentraciones de medicamento inalterado frente al 
tiempo debe dar lugar a una línea recta de pendiente negativa cuyo valor absoluto es igual a 
ko. 
En las reacciones de orden uno la velocidad de degradación es proporcional a la 
concentración de principio activo 
dC 
dt 
k1.C 
Siendo k1 la constante de velocidad de degradación de 
dimensiones [tiempo
-1
].
25 
Tiempo 
C
o
n
ce
n
tr
ac
ió
n
 
C Co kot 
ln
 C
 
26 
Ea 
La forma integrada de esta ecuación conduce a 
C Co .e 
k1.t ó ln C= ln Co – k1. t
Por lo tanto, una representación de ln de la concentración frente al tiempo debe dar lugar a 
una línea recta de pendiente negativa cuyo valor absoluto es igual a k1. 
Efecto de la temperatura 
La ecuación de Arrhenius permite relacionar la degradación y temperatura y se expresa como 
k A.e
( Ea / RT )
En la que k representa la constante de velocidad de degradación a temperatura absoluta T; A 
se conoce como factor de frecuencia; R es la constante de los gases (1,98 cal/mol. ºK); y Ea la 
energía de activación del proceso degradativo (cal/mol). 
En forma logarítmica: 
1/T 
Por lo tanto, si se determina el valor de la constante de 
velocidad de degradación a distintas temperaturas, la 
representación de ln k frente a 1/T debe conducir a un 
trazado rectilíneo de cuya pendiente es posible estimar el 
valor de Ea. 
La ecuación de Arrhenius encuentra su principal utilidad
en la predicción de la velocidad de degradación del 
fármaco, contenido en el medicamento, a temperatura ambiente a partir de datos obtenidos a 
temperaturas elevadas (Estudios acelerados de estabilidad). 
Estabilidad de la indometacina en disolución 
El objetivo de esta práctica es caracterizar la degradación de la indometacina en disolución. 
La indometacina es un agente antiinflamatorio y analgésico que se utiliza en el tratamiento de 
la artritis reumatoide. Es estable en disoluciones diluidas de carácter ácido pero sufre una 
rápida hidrólisis en medio alcalino. 
Procedimiento 
ln k ln A 
Ea 
. 
1
R T 
ln
 k
 
27 
1 
- Pesar 50 mg de indometacina y preparar una disolución de concentración 2 mg/ml en una 
mezcla agua-etanol (40:60). Esta disolución ya está preparada y disponible para el alumno 
con el nombre de disolución de indometacina. 
- Colocar un vaso de precipitados conteniendo 97 ml de agua desionizada en un baño 
termostatizado y una vez que se alcance la temperatura deseada en el interior del vaso, añadir 
2 ml de la disolución de hidróxido sódico (NaOH 0,1 N) y 1 mL de la disolución de 
indometacina, poniendo en marcha el cronómetro. 
- Retirar las muestras de aproximadamente 3 ml con una pipeta Pasteur cada 2 minutos durante 
20 minutos. Depositar la muestra en la cubeta del espectrofotómetro y leer rápidamente a una 
longitud de onda de 318 nm (
1
 = 182) Coeficiente de extinción específica: 1g/100 mL. 
Realizar la experiencia a 40, 50 y 60 ºC y con los datos obtenidos (comenzar por 60ºC): 
- Determinar la cinética a la que se ajusta el proceso degradativo de la indometacina a las 
distintas temperaturas. 
- Calcular el valor de Ea del proceso degradativo de la indometacina. 
- Predecir el valor de la constante de velocidad de degradación de la indometacina a 
temperatura ambiente (20 ºC). 
40 ºC 50 ºC 60 ºC 
Tiempo 
(min) 
Abs 318 Conc 
(g/100mL) 
Conc 
( g/mL) 
Abs 
318 
Conc 
(g/100mL 
Conc 
( g/mL) 
Abs318 Conc 
(g/100mL) 
Conc 
( g/mL) 
2 
4 
6 
8 
10 
12 
14 
16 
18 
20 
28 
29 
PRÁCTICA Nº 3 
ESTUDIO DEL COMPORTAMIENTO REOLÓGICO DE SISTEMAS 
DISPERSOS HETEROGÉNEOS 
INTRODUCCIÓN A LA REOLOGÍA DE LOS SISTEMAS DISPERSOS 
HETEROGÉNEOS 
La reología estudia cómo se deforma y fluye la materia cuando se le somete a una presión. 
Ésta puede ser una tensión, una compresión o una fuerza de cizalla. Aunque en general los 
sistemas dispersos y coloidales se comportan de forma muy similar a los líquidos cuando son 
sometidos a una tensión o una compresión, su comportamiento es, en cambio, muy diferente 
cuando se les aplican fuerzas de cizalla. 
La fuerza de cizalla (“shear stress”) puede definirse como la fuerza aplicada sobre el sistema 
por unidad de área de contacto, y la velocidad de cizalla (“shear rate”) como el gradiente de 
velocidad que se establece en el sistema. 
La relación entre la fuerza de cizalla y la velocidad de cizalla describe el comportamiento 
reológico del sistema y al representar en un eje de coordenadas (velocidad en abscisas y 
fuerza de cizalla en ordenadas) se obtiene la llamada curva de fluidez del sistema. Si se 
representa la viscosidad frente a la velocidad de cizalla se obtiene la curva de viscosidad. 
Para obtener estas curvas es necesario disponer de un viscosímetro que puede disponer de 
distintas geometrías: cilindros co-axiales, cono-placa o doble-placa. En función de las curvas 
obtenidas se pueden diferenciar distintos tipos de comportamientos reológicos: 
Newtoniano: la viscosidad se mantiene constante al variar la velocidad de cizalla 
No newtoniano: la viscosidad varía con la velocidad de cizalla. 
30 
1.- FLUJO NEWTONIANO 
En los fluidos newtonianos al representar la fuerza de cizalla frente a la velocidad de 
cizalla se obtiene una línea recta, por lo tanto se dice que el flujo es newtoniano. La 
pendiente de la recta es constante y representa la viscosidad del sistema. 
2.- FLUJO NO NEWTONIANO 
En los sistemas que presentan este tipo de flujo la viscosidad no permanece constante 
sino que varia con la velocidad de cizalla aplicada. 
2.1.- Comportamiento plástico ideal (Bingham) 
Valor de ruptura 
Este tipo de materiales se comporta como un sólido (elástico), es decir, no fluyen a 
fuerzas de cizalla menores de cierto valor denominado “valor de ruptura Bingham”. A partir 
del momento en que se aplique una fuerza de cizalla superior a dicho valor, el material fluye y 
su comportamiento es el de un fluido Newtoniano. Para caracterizarlos se utilizan dos 
parámetros, la viscosidad plástica, obtenida de la pendiente de la línea recta, y el valor de 
31 
ruptura que se obtiene extrapolando esta porción recta al eje donde se representa la fuerza de 
cizalla. 
 
2.2.- Comportamiento plástico no ideal 
En los materiales que presentan este tipo de comportamiento se observa una pequeña 
zona de relación no lineal entre la fuerza de cizalla y la velocidad de cizalla antes de que se 
obtenga la porción recta (relación lineal). De hecho, el material suele comenzar a fluir a 
fuerzas de cizalla menoresque el valor de ruptura. 
 
 
 
 
 
 
 
 
2.3.- Comportamiento pseudoplástico 
Estos materiales no poseen valor de ruptura, es decir, fluyen en cuanto se les aplica una 
fuerza. En este caso al ir incrementando la velocidad de cizalla se provoca una continua 
degeneración de la estructura del material, lo que conlleva una reducción continua del valor 
de la viscosidad obteniéndose una curva cuya pendiente disminuye de manera continua. 
 
 
 
 
 
32 
2.4.- Comportamiento dilatante 
Cuando un sistema formado por partículas sólidas irregulares dispersas en un líquido es 
sometido a una fuerza, experimenta, en ciertas ocasiones, un aumento de su volumen. En este 
caso, al ir incrementando la velocidad de cizalla se provoca un incremento del valor de 
viscosidad. 
COMPORTAMIENTO TIEMPO-DEPENDIENTE 
Hasta ahora se ha considerado únicamente el comportamiento tiempo-independiente de 
los fluidos, es decir, aquellos casos en que aunque la viscosidad varíe con la velocidad de 
cizalla, no experimenta variación en función del tiempo durante el cual se aplica dicha fuerza. 
Significa que se obtendrá el mismo valor de viscosidad para dicho sistema 
independientemente del tiempo que duren estos experimentos. Sin embargo, existe otro grupo 
de materiales cuyo comportamiento es tiempo-dependiente. Son materiales cuya viscosidad 
depende no solo de la velocidad de cizalla, sino también del tiempo que el material haya sido 
sometido a la fuerza de cizalla. 
La estructura del sistema, que es lo que determina la viscosidad (la propiedad que se 
esta midiendo), se altera a una velocidad observable durante el tiempo de medida. 
Análogamente, aunque un sistema sea reversible y pueda recuperar su estructura inicial una 
vez se haya cesado de aplicar una fuerza, esta recuperación no será instantánea, sino que 
requerirá cierto tiempo. Este tiempo-dependencia da origen a dos fenómenos: tixotropía y 
reopexia. 
La tixotropía es el fenómeno más común de los dos. Para detectar si existe tixotropía, se 
determina la velocidad de cizalla en ciclos en los que se aumenta y disminuye la fuerza de 
cizalla. Si las curvas obtenidas en cada dirección son diferentes, se obtiene un ciclo de 
histéresis. Cuando el reograma descendente se sitúa por debajo del ascendente (la curva que 
desciende se sitúa hacia la derecha de la ascendente), ello indica que la estructura interna se 
33 
recupera lentamente. De hecho, la facilidad de reestructuración del sistema se evalúa 
mediante el área englobada en el ciclo de histéresis. Este tipo de fluidos también se denomina 
“fluidos tixotrópicos” (o tixotrópicos positivos) y son los más comunes. Con menor 
frecuencia se observa tixotropía negativa, producida por fluidos dilatantes en los cuales la 
curva descendente se sitúa a la izquierda (o por encima) de la ascendente. 
 
 
 
 
 
La reopexia es un comportamiento muy relacionado con la tixotropía negativa, de hecho 
muchos autores piensan que es lo mismo. La diferencia entre la reopexia y la tixotropía 
negativa es que la reopexia se manifiesta únicamente a velocidades de cizalla baja. Se dice 
que existe reopexia si el sistema recobra antes la viscosidad inicial sometiéndolo a 
velocidades bajas de cizalla (una pequeña agitación o vibración) que dejándolo en reposo. 
34 
OBJETIVO 
El objetivo de esta práctica es que el alumno sea capaz de distinguir entre los diferentes 
tipos de comportamiento reológico que pueden presentar los materiales. 
DESARROLLO DE LA PRÁCTICA 
Análisis de diferentes sistemas utilizando un reómetro BROOKFIELD DV-III. 
Reómetro BROOKFIELD DV-III 
Las muestras a analizar son: 
1. Aceite de silicona
2. Suspensión de ibuprofeno (se proporciona ya preparada al alumno)
3. Pasta de almidón (15 g de almidón de maíz en 14 mL de agua)
4. Gel de goma xantana al 1% (pesar 500 mg de goma xantana y dispersarla, agitando
bien, con 1 mL de etanol, posteriormente añadir 49 mL de agua destilada, agitando
enérgicamente hasta se produzca la gelificación).
La geometría a utilizar para realizar las determinaciones será cono-placa. 
El profesor realizará las correspondientes determinaciones de los sistemas y 
posteriormente el alumno construirá las siguientes gráficas: 
a) Fuerza de cizalla frente a velocidad de cizalla
b) Viscosidad frente a velocidad de cizalla
A partir de las gráficas obtenidas el alumno deberá indicar el comportamiento reológico 
que presenta cada una de las muestras. 
35 
RESULTADOS 
1.- ACEITE DE SILICONA (medida manual, se realizaran 3 medidas individuales para 
cada valor de cizalla, posteriormente se calculan los valores medios de las fuerzas de cizalla y 
de la viscosidad). 
Velocidad de cizalla 
(s
-1
) 
Fuerza de cizalla 
(D/cm
2
) 
Fuerza de cizalla 
media (D/cm
2
) 
Viscosidad (cP) 
Viscosidad 
media (cP) 
COMPORTAMIENTO REOLÓGICO: 
36 
2.- SUSPENSIÓN DE IBUPROFENO 
Velocidad de cizalla (s
-1
) Fuerza de cizalla (D/cm
2
) Viscosidad (cP) 
COMPORTAMIENTO REOLÓGICO: 
3.- PASTA DE ALMIDÓN 
Velocidad de cizalla (s
-1
) Fuerza de cizalla (D/cm
2
) Viscosidad (cP) 
COMPORTAMIENTO REOLÓGICO: 
37 
4.- GEL DE GOMA XANTANA 
Velocidad de cizalla (s
-1
) Fuerza de cizalla (D/cm
2
) Viscosidad (cP) 
COMPORTAMIENTO REOLÓGICO: 
38 
PRÁCTICA Nº 4 
FORMULACIÓN Y ELABORACIÓN DE SUSPENSIONES 
OBJETIVO 
El objetivo de esta práctica es la elaboración de suspensiones, analizando la influencia que 
ejerce sobre la formulación la adición de diferentes cantidades de excipientes y de distintos 
tipos, con el fin de que el alumno se familiarice con la acción de cada uno de ellos y observe 
su efecto en el grado de floculación. 
INTRODUCCIÓN 
Las suspensiones son sistemas dispersos heterogéneos formados por un sólido (fase dispersa) 
disperso en el seno de un líquido (fase dispersante). Las partículas sólidas deben tener un 
tamaño superior a 0,1 m. Su aspecto es turbio. 
Las suspensiones son sistemas termodinámicamente inestables que tienen tendencia a 
separarse en las dos fases que las constituyen, formando un sedimento. 
La estabilidad física de una suspensión se mantiene mientras que las partículas dispersas están 
uniformemente distribuidas y no se agregan ni se separan, aunque si llegan a separarse, se han 
de redispersar fácilmente mediante una simple agitación. En la mayoría de las formulaciones 
se deben incorporar sustancias coadyuvantes para favorecer la interposición de la fase 
dispersa y poder obtener un sedimento que se redisperse fácilmente, para recuperar la 
homogeneidad que tenía en el momento de su preparación y permitir una correcta 
dosificación. 
Debido a este concepto de estabilidad los ensayos de las suspensiones se 
fundamentan en la separación de las fases y en la posibilidad de redispersión del sedimento. 
Se denomina “grado de floculación” ( ) a la relación entre el volumen (o altura) del 
sedimento formado en la suspensión conteniendo agentes floculantes y el volumen (o altura) 
del sedimento formado en la suspensión sin la adición de floculantes. 
39 
Suspensiones defloculadas 
Largo tiempo de sedimentación 
Pequeño volumen del sedimento Cementación 
Difícil redispersión 
No nos interesa este tipo de suspensiones 
Menor tiempo de sedimentación 
Gran volumen del sedimento 
Fácil redispersión 
Por eso nos interesa este tipo de suspensiones 
Suspensiones floculadas 
 Diferencia entre suspensiones floculadas y defloculadas 
No nos interesa este tipo de suspensiones Por eso nos interesa este tipo de suspensiones 
Largo tiempo de sedimentación 
Pequeño volumen del sedimento Cementación 
Difícil redispersión 
Menor tiempo de sedimentación 
Gran volumen del sedimento 
Fácil redispersión 
Suspensiones defloculadas Suspensiones floculadas 
40 
DESARROLLO DE LA PRÁCTICA 
Suspensión de sulfanilamida 
Composición 50 mL 
Sulfanilamida 5 g 
Citrato monosódico 2 g 
Avicel RC591 0,38 g 
Carboximetilcelulosa sódica 0,28 g 
Sorbitol(solución al 70 %) 2,5 g 
Sal sódica de p-hidroxibenzoato de metilo 
(Nipagin M) 
0,06 g 
Sal sódica de p-hidroxibenzoato de propilo 
(Nipasol) 
0,01 g 
Sacarina sódica 0,05 g 
Agua destilada c.s.p. 50 mL 
Función de los aditivos de la formulación 
Citrato monosódico:Ajuste de pH de la suspensión 
Avicel RC591 (Celulosa coloidal o celulosa dispersable): Es una mezcla de celulosa 
microcristalina (85 %) y carboximetilcelulosa sódica (15 %). Agente suspensor. Se trata de 
una mezcla dispersable en agua que produce geles tixotrópicos. 
(Avicel: Generalmente corresponde a celulosa microcristalina. En suspensiones se utiliza 
como agente suspensor. Existen diferentes tipos de Avicel: Avicel PH 101, PH 102, PH 103, 
que se diferencian por su tamaño de partícula, contenido de humedad, propiedades de flujo y 
otras propiedades físicas). 
Carboximetilcelulosa sódica (Carmelosa o goma de celulosa): Agente suspensor y 
viscosizante (en formulaciones orales) 
Sorbitol: Humectante y edulcorante 
Nipagin y Nipasol: Conservantes 
Sacarina sódica: Edulcorante 
Agua: Vehículo 
41 
Modo de preparación 
Preparar 50 ml de suspensión 
- Pesar 7,00 g de sulfanilamida, pulverizar en el mortero y tamizar con el tamiz 
de 0,600 mm de apertura de malla. Pesar 5,00 g del tamizado y añadir el sobrante en un 
bote identificado como Sulfanilamida tamizada. 
- Pesar 3,00 g de citrato monosódico, pulverizar en el mortero y tamizar con el 
tamiz de 0,600 mm. Pesar 2,00 g del tamizado y recuperar el tamizado sobrante en un bote 
identificado como Citrato monosódico tamizado. 
- En el vaso de precipitados de 100 ml, añadir en primer lugar la solución de 
sorbitol y a continuación añadir 15 ml de agua destilada y disolver el sorbitol utilizando una 
varilla de vidrio. Añadir los conservantes (Nipagin-M y Nipasol). A continuación se añade 
el citrato monosódico, previamente pulverizado y tamizado y la sacarina sódica, agitando 
con la varilla de vidrio hasta que se disuelva completamente. 
- En el vaso de precipitados de 250 ml, poner 30 ml de agua destilada. Agitar de 
forma continua con el agitador y añadir en pequeñas porciones el Avicel RC 591 para que 
no se formen grumos. Una vez obtenida la dispersión, añadir la carboximetilcelulosa sódica 
en pequeñas cantidades, agitando bien cada una de ellas antes de añadir la siguiente porción. 
- A la dispersión formada se va añadiendo en pequeñas porciones mediante 
agitación continua, la primera disolución de conservantes con sorbitol y la sulfanilamida. 
- Al final, añadir agua destilada hasta la señal de 50 ml, si es necesario y agitar 
hasta conseguir la homogeneización completa. 
Nota: En la práctica uno de los grupos pesará y tamizará la sulfanilamida y otro 
grupo el citrato monosódico para todos los grupos que componen la práctica. 
42 
Sulfanilamida Citrato sódico 
Sorbitol 
* Agua 
* Nipagin M
* Nipasol 
* Citrato Na 
* Sacarina 
Agua 
* Avicel 591
* CMC Na
ESQUEMA DE PREPARACIÓN DE LA SUSPENSIÓN 
pulverizar 
tamizar 
pulverizar 
tamizar 
Vaso 100 mL Vaso 250 mL 
Agitar con varilla Agitador de paletas 
+ Sulfanilamida 
Agitar hasta homogeneizar 
Acondicionamiento 
Envasar en frascos de vidrio de color topacio, sin llenarlos completamente, para 
permitir una buena agitación antes de cada dosificación. 
Estudio del grado de floculación 
- Añadir 25 ml de la suspensión preparada en un tubo de ensayo (Tubo I). 
- Preparar 50 ml de otra suspensión igual a la anterior pero sin Avicel y añadir 
25 ml de esta suspensión en un tubo de ensayo (Tubo II). 
- Preparar 50 ml de una tercera suspensión sin carboximetilcelulosa sódica y 
añadir 25 ml de esta suspensión en un tubo de ensayo (Tubo III). 
- Preparar 50 ml de la última suspensión que sólo contenga sulfanilamida, 
sorbitol y agua destilada y añadir 25 ml de esta suspensión en el cuarto tubo de ensayo 
(Tubo IV). 
Agua 
* Avicel 591
* CMC Na
Sorbitol 
* Agua 
* Nipagin M
* Nipasol 
* Citrato Na 
* Sacarina 
Citrato sódico Sulfanilamida 
43 
Suspensión 
inicial 
I II III IV 
Inicial menos 
Avicel RC591 
Suspensión 
inicial 
Inicial menos 
CMC Na 
Sulfanilamida 
+ Sorbitol 
+ Agua 
Inicial menos 
CMC Na 
- Dejar los cuatro tubos en reposo durante 24 horas y medir con una regla la 
altura del sedimento. 
- Observar las características de los sedimentos formados y las de los líquidos 
sobrenadantes. 
Inicial menos 
Avicel RC591 
Sulfanilamida 
+ Sorbitol 
+ Agua 
Composición de las suspensiones de los cuatro tubos 
Anotar los resultados en la tabla siguiente: 
Tubo I Tubo II Tubo III Tubo IV 
Altura en cm 
Grado de floculación ( )= Altura Tubo I / Altura Tubo IV (Suspensión inicial) 
Grado de floculación ( )= Altura Tubo II / Altura Tubo IV (Suspensión sin Avicel) 
Grado de floculación ( )= Altura Tubo III / Altura Tubo IV (Suspensión sin CMC Na) 
IV III II I 
44 
Principales aplicaciones terapéuticas 
Antibacteriana. 
Observaciones 
Características organolépticas 
Grado de floculación 
Comentarios 
45 
PRÁCTICA Nº5 
PREPARACIÓN DE GRANULADOS POR VÍA HÚMEDA Y SECA, 
Y 
ANÁLISIS GRANULOMÉTRICO 
Los granulados constituyen formas farmacéuticas obtenidas por aglomeración de polvos de 
fármacos y excipientes. En general los granulados se encuentran formados por pequeños 
gránulos irregulares, que en conjunto presentan un aspecto homogéneo. Los granulados 
pueden obtenerse por 3 procedimientos fundamentales: granulación en seco, granulación por 
vía húmeda y granulación por fusión. Los granulados pueden administrarse directamente por 
vía oral o dedicarse a la preparación de comprimidos o cápsulas. 
En esta práctica inicialmente se preparará un granulado efervescente utilizando un método de 
granulación vía húmeda y otro granulado por vía seca. A continuación realizaremos un 
análisis granulométrico (utilizando el granulado preparado el día anterior). 
PARTE 1: PREPARACIÓN DEL GRANULADO 
Granulación por vía húmeda 
Este procedimiento de preparación se subdivide en varias fases: pulverización de los 
componentes, mezclado, humectación, granulación y secado. 
Procedimiento de obtención: para ello los componentes sólidos del granulado se pulverizan y 
mezclan en un mortero. A continuación, los polvos se humedecen con líquidos apropiados 
como agua o alcohol o con soluciones aglutinantes como jarabe simple. 
Al tratar de granular la masa obtenida, el tipo de tamiz utilizado va a condicionar el tamaño de 
los gránulos obtenidos. A nivel del pequeño laboratorio, la operación se realiza manualmente 
obligando a pasar la masa a través del tamiz, aplicando una presión manual. Una vez obtenido 
el granulado se realiza la desecación del mismo a temperaturas superiores a los 30ºC, o bien al 
aire libre. 
Cuando se ha completado la desecación del granulado, debe realizarse su calibración. 
46 
En esta práctica se realizará la preparación de un granulado de aspirina efervescente, con la 
siguiente composición: 
ÁCIDO ACETIL SALICÍLICO 2,5 g 
POLVO DE ÁCIDO CÍTRICO DESECADO 10,0 g 
POLVO DE ÁCIDO TARTÁRICO DESECADO 15,0 g 
BICARBONATO SÓDICO 29,0 g 
POLVO DE AZÚCAR 9,0 g 
ALCOHOL DE 96º c.s. 
En la preparación de granulados efervescentes, interesa evitar la reacción del ácido con el 
bicarbonato presente, lo que provocaría una liberación prematura de CO2. Por esta razón la 
manipulación debe de realizarse en medio anhidro utilizando polvos secos y alcohol como 
líquido de granulación. 
Preparación: 
- Para preparar el granulado problema se parte de los productos previamente 
pulverizados: por una parte se mezclan el ácido acetil salicílico con los ácidos y por 
otra el bicarbonato con el azúcar. Después se deben mezclar ambas fracciones en un 
mortero y añadir el alcohol poco a poco en cantidad suficiente para obtener una masa 
de consistencia suficiente. Una vez obtenida la masa (mezcla humectada, tipo nieve, 
sin llegar a estar mojada) deberá granularse haciéndola pasar a travésde un tamiz. La 
fase de secado se realizará al aire, dejando el granulado extendido sobre un papel de 
filtro sin introducirlo en la estufa. 
Granulación por vía seca 
En los métodos de granulación por vía seca, la adhesión de las partículas se produce por efecto 
de la presión aplicada. Este método se utiliza para aquellos granulados destinados a la 
preparación de comprimidos exclusivamente. En esta práctica, vamos a obtener un granulado 
por vía seca. 
47 
Composición (preparar 100g): 
Componentes % Función 
Celulosa microcristalina (Avicel
®
 
PH102) 
25 
Hidroxipropilmetil celulosa 
(Methocel
®
 K15M CR Premium) 20 
Sílice coloidal anhidro 
(Aerosil
®
) 1 
Destab
® 
90 (Carbonato de magnesio + 
almidón pregelatinizado) 
25 
Estearato de magnesio (Kemilub
®
 EM-F) 2 
Polivinil pirrolidona (PVP K30) 27 
TOTAL 100 
Procedimiento de obtención: Pesar las cantidades correspondientes de cada componente, 
tamizando previamente el Aerosil
®
. Introducir todos los componentes (excepto el estearato de
magnesio) en la mezcladora tipo V y mezclarlos durante 10 min. A continuación añadir el 
estearato de magnesio a la mezcladora tipo V y dejarlo en agitación durante otros 5 min. 
Una vez que hemos mezclado todos los componentes, el paso siguiente es pasarlo por el equipo 
de granulación en seco (hablar con la persona responsable de las prácticas para su puesta en 
marcha). Para ello, encendemos la granuladora y modulamos la velocidad con la ruleta giratoria. 
Para recoger el granulado empleamos una bolsa de plástico, con el fin de evitar la dispersión de 
partículas finas del granulado. Al terminar la granulación, limpiaremos bien el equipo. 
PARTE 2: ANÁLISIS GRANULOMÉTRICO 
Una vez obtenidos los dos granulados (en el caso del granulado por vía húmeda utilizaremos 
el que prepararon el día anterior los compañeros), podemos realizar su análisis 
granulométrico, mediante un procedimiento de tamización en cascada. 
La tamización podemos definirla como aquella operación básica, mediante la cual se consigue
48 
la separación por tamaño de las distintas partículas que puede presentar un sólido. 
 
 
Para realizar un análisis granulométrico por tamización, se colocan varios tamices, en régimen 
de cascada, tal como se indica en la figura, de tal forma que primero se coloca el de mayor 
abertura de malla y el último es el de menor abertura. En este caso se va a utilizar un 
tamizador automático, el cual debe montarse tal y como se muestra en la imagen: 
 
 
 
 
 
El sólido con el que se va a realizar el análisis granulométrico se adiciona sobre el tamiz 
superior, atraviesa los tamices restantes y queda distribuido en diferentes fracciones según el 
tamaño de las partículas. 
 
En cada tamiz observamos dos fracciones (rechazo y cernido). Por tanto, si utilizamos n 
tamices, obtendremos "n + 1" fracciones para una tamización en cascada. En este caso 
obtenemos las fracciones : R1, R2, R3 , R4 y C4. 
 
Siempre se debe cumplir que B = C + R, siendo B la cantidad a analizar o producto bruto. 
Se llama índice de cernido, IC al porcentaje de finos (C) que se halla en la fracción del B.. 
 
 
 
49 
 
I
C 
= 
C 
B 
100 ÍNDICE DE CERNIDO 
50 
 
 
De la misma manera, se denomina índice de rechazo, al porcentaje de gruesos (R) que se halla 
en la fracción del B. 
 
I
R 
= 
R 
B 
100 ÍNDICE DE RECHAZO 
 
 
Evidentemente IC + IR = 100 
 
 
REPRESENTACIÓN GRÁFICA DE LOS RESULTADOS DE TAMIZACIÓN 
 
 
Conociendo los pesos de cada una de las fracciones retenidas en los diferentes tamices, y los 
diámetros de la cascada de tamices se puede realizar una representación gráfica de los 
resultados obtenidos. El diámetro de los tamices se calcula mediante la media aritmética de la 
abertura de malla del tamiz superior e inferior: 
 
D
2 
= 
T
1 
+ T
2 
2 
D
3 
= 
T
2 
+ T
3 
2 
 
 
 
 
y así sucesivamente.. 
 
 
Las gráficas mediante las cuales se expresan los resultados del análisis granulométrico pueden 
ser distributivas o acumuladas. Las primeras, también llamadas diferenciales, se obtienen 
representando en un eje de coordenadas tamaños frente a frecuencias, expresadas 
generalmente en porcentajes que quedan retenidos en cada tamiz. 
 
 
 
 
 
 
dx dy 
 
 
2 
51 
 
Las gráficas acumuladas se obtienen representando diámetros o tamaños de partícula frente a 
porcentajes acumulados. 
 
 
 
 
 
REALIZACIÓN DE LA PRACTICA 
 
 
1.- Pesar el granulado (B) ( preparado el día anterior). 
2.- Adicionar el sólido (B) sobre el tamiz de mayor abertura de malla, colocar la tapa 
correctamente sujeta en el equipo y ponerlo en marcha. 
5.- Calcular el índice de cernido y de rechazo, tomando como criterio de separación el tamiz 
de 1,25 mm. 
 
6.- Representar en el eje de coordenadas el % de pesos sobre el tamiz frente a diámetros 
medios y trazar la curva diferencial correspondiente. 
 
7.- Representar en el eje de coordenadas el % de rechazos acumulados frente al diámetro 
medio y trazar la correspondiente curva acumulada. Representar de igual modo el % de 
cernidos acumulados. 
52 
RESULTADOS EXPERIMENTALES 
 
 
 
Tamiz 
nº 
 
Abertura 
de malla 
(T) (mm) 
Diámetro 
medio 
T1+T2 mm 
2 
 
Peso sobre 
tamiz (g) 
 
% Peso 
sobre tamiz 
(% rechazo) 
 
Peso 
cernido(g) 
 
 
% cernido 
 
Rechazos 
acumulados 
(%) 
1 2,0 
2 1,5 
3 1,25 
4 1,0 
5 0,315 
C 
 
IC = 
IR = 
53 
REPRESENTACIONES 
 
 
A) % DE PESO SOBRE EL TAMIZ FRENTE A DIÁMETRO MEDIO. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
B) % DE PESO ACUMULADO (RECHAZOS O CERNIDOS) FRENTE A 
DIÁMETRO MEDIO 
54 
55 
PRÁCTICA Nº6 
ANÁLISIS Y ELABORACIÓN DE UN PROCEDIMIENTO 
NORMALIZADO DE TRABAJO (PNT) 
 
La Industria Farmacéutica al igual que otras industrias está sometida a las reglas del mercado 
que imponen unas exigencias de calidad sin las cuales un determinado producto no sería 
utilizado por los consumidores. 
 
CONCEPTO DE CALIDAD 
De acuerdo con el diccionario de la Real Academia de la Lengua, la calidad puede definirse 
como “el conjunto de atributos o cualidades que constituyen la manera de ser de una cosa”, lo 
cual quiere decir que la calidad está determinada por las características de un producto con el 
objetivo de satisfacer una necesidad o un deseo del consumidor. 
 
La calidad de los medicamentos se basa fundamentalmente en dos factores: 
 Fabricación de acuerdo a las normas recomendadas (GMPs o NCF) 
 Controles realizados inicialmente sobre los materiales, durante el proceso de 
fabricación y en el producto terminado. 
 
GMPs (GOOD MANUFACTURING PRACTICES) = NCF (NORMAS DE 
CORRECTA FABRICACIÓN Y CONTROL DE MEDICAMENTOS) 
 
Son el conjunto de normas que cada laboratorio farmacéutico debe poner en práctica con el 
fin de asegurar la calidad de los productos que fabriquen, debiendo para ello tomar todas las 
medidas oportunas para garantizar que los medicamentos posean la calidad necesaria según el 
uso a que se destinen. 
Este conjunto de medidas es muy amplio abarcando las normas que deben afectar a: 
Personal 
Locales 
Maquinaria 
Instalaciones 
Materias primas 
Productos terminados 
Fabricación 
56 
Control de calidad 
Documentación 
Expedición de especialidades 
 
 
La aplicación correcta de las GMPs comienza por el que es considerado el primero de los diez 
mandamientos de las GMPs que indica que es preciso escribir todos los procedimientos, 
normas o técnicas que deben ser cumplidos en el laboratorio. Para ello, es necesario disponer 
de un soporte donde exponer la normativa correspondiente de una forma normalizada para 
que todos los procedimientos sean redactados de una manera equivalente y siguiendo un 
mismo criterio. Ya sea una norma de muestreo de materias primas, un método de análisis, un 
procedimiento de limpieza o la validación de un procesode fabricación, todo documento debe 
seguir una normativa uniforme de redacción, publicación, descripción y control y este soporte 
es lo que se conoce como PNT. 
 
PROCEDIMIENTO NORMALIZADO DE TRABAJO (PNT) 
 
 
Son todos aquellos procedimientos escritos que describen como se realizan determinados 
ensayos rutinarios de laboratorio o de cualquier otra actividad que normalmente no se 
especifican de forma detallada en los protocolos ni en las directrices del estudio. 
 
De una forma genérica los PNTs se pueden dividir en generales y específicos. 
Generales: aquellos que describen asuntos generales aplicables a varios departamentos del 
laboratorio. 
Formación del personal 
Confidencialidad 
Redondeo de cifras 
 
 
 
Específicos: los que describen normas o métodos de un departamento. 
Valoración 
Determinación de cenizas 
57 
CONSIDERACIONES GENERALES 
 
- Redacción en forma de pautas claras, precisas e inteligibles 
- Párrafos cortos, pequeña introducción. 
- Epígrafes principales y secundarios enfatizados según orden de importancia 
- Siempre que sea posible utilizar diagramas de flujo 
 
 
CONFIGURACIÓN 
 
Un PNT está dividido en dos partes. 
a) parte identificativa (encabezado) 
b) parte descriptiva (contenido) 
 
 
PORTADA 
 
RESTO DE PÁGINAS 
 
 
 
 
INTRODUCCIÓN TEÓRICA. 
 
Uno de los aspectos más importantes de los granulados es que tengan unas adecuadas 
propiedades de flujo. Esto es fundamental cuando los granulados se utilizan en la preparación 
de comprimidos, porque ello va a influir en el llenado homogéneo de la matriz de la máquina 
de comprimir, permitiendo la obtención de comprimidos que presenten poca variación de 
peso. Se debe tener en cuenta que el llenado de la matriz se hace volumétricamente, pero esta 
dosificación únicamente es correcta cuando el polvo presente unas propiedades de flujo 
adecuadas. 
Las propiedades flujo pueden determinarse mediante métodos angulares y métodos de 
compactación. 
 
MÉTODOS ANGULARES 
 
 
Para expresar las propiedades de flujo de un granulado se puede calcular el llamado ángulo 
de flujo o ángulo de vertido o de deslizamiento o de reposo, que mide las fuerzas de 
rozamiento de un polvo o de un granulado. Este ángulo se calcula midiendo el ángulo de la 
58 
pendiente formada por la generatriz del cono que se produce cuando se derrama libremente, 
desde un embudo, la sustancia pulveriforme sobre una superficie horizontal. 
 
 
 
 
 
59 
En un embudo se pone una cierta cantidad de granulado (suficiente para formar un cono) y se 
deja fluir para que caiga sobre un papel milimetrado, sobre el que se va formando un cono 
cuya altura va aumentando hasta que obtura el orificio del embudo, en cuyo momento deja de 
caer granulado. 
 
En estas condiciones se determina el diámetro de la base del cono formado. La altura será 
aquella a la que se ha colocado el embudo. Por lo tanto, se puede conocer el ángulo de 
deslizamiento mediante el cálculo de su tangente: 
tg = 
h 
r 
= ángulo de reposo h = 
altura del cono 
r = radio de la base del cono 
 
Ángulo de reposo (º) PROPIEDADES DE FLUJO 
25-30 Excelentes 
31-35 Buenas 
36-40 Correctas 
41-45 Pasables 
46-55 Pobres 
56-65 Muy pobres 
> 66 Muy, muy pobres 
 
Cuadro 1. Propiedades de flujo y ángulos de reposo correspondientes 
 
60 
 
 
MÉTODOS DE COMPACTACIÓN 
 
61 
El fundamento de estos métodos consiste en someter al sólido a una serie de golpes que 
favorecen la reordenación de sus partículas, pudiéndose así evaluar la facilidad del producto 
para reducir su volumen. 
 
Representando el volumen ocupado por el sólido frente a número de golpes (o frente al 
tiempo) se obtienen unos perfiles (Figura 2) en los que se pueden distinguir claramente dos 
zonas; un primer tramo en el que se produce una rápida reducción en el volumen ocupado por 
el sólido, que se corresponde con la facilidad con la que se reordenan las partículas, seguido 
de una etapa en la que el producto experimenta pequeñas reducciones volumétricas hasta 
hacerse prácticamente nulas. 
62 
V0 
 
 
 
 
 
V 
 
 
 
 
Tiempo 
 
Figura 2. Evolución en el tiempo del volumen ocupado por un sólido pulverulento sometido a 
compactación por golpeteo 
 
-Parámetros 
 
 Compresibilidad (Índice de Carr, IC) 
 
El volumen ocupado por el sólido en las condiciones descritas en el apartado anterior 
es una medida del grado de empaquetamiento máximo que pueden alcanzar sus partículas y, 
en consecuencia, es una medida de la compresibilidad, parámetro éste estrechamente 
relacionado con las propiedades de flujo del sólido pulverulento. 
La compresibilidad o índice de Carr se calcula mediante la siguiente expresión: 
 
V0 
I c 
 V 
100 
V0 
Siendo: 
 
V0: volumen inicial del sólido depositado en la probeta del voluminómetro 
V: volumen final del sólido tras el golpeteo 
 Índice de Hausner (IH) 
 
Este parámetro también relaciona el volumen del sólido antes y después de que éste 
sea sometido al golpeteo. 
El índice de Hausner se calcula mediante la siguiente expresión:Siendo:V0: 
volumen inicial del sólido V: volumen final del sólido tras el golpeteo 
 
V0 
IH 
V 
 
-Interpretación de los resultados 
 
Basándose en los valores de compresibilidad e índice de Hausner, se ha propuesto una 
V
o
lu
m
en
 
63 
clasificación general de las propiedades de flujo de los sólidos pulverulentos (Cuadro 2). 
 
COMPRESIBILIDAD (%) PROPIEDADES DE FLUJO ÍNDICE DE HAUSNER 
0-10 Excelentes 1,00-1,11 
11-15 Buenas 1,12-1,18 
16-20 Correctas 1,19-1,25 
21-25 Pasables 1,26-1,34 
26-31 Pobres 1,35-1,45 
32-37 Muy pobres 1,46-1,59 
38 Muy, muy pobres 1,6 
 
 
Cuadro 2. Clasificación de las propiedades de flujo de los sólidos pulverulentos en función 
de los valores de compresibilidad e índice de Hausner 
 
 
REALIZACIÓN DE LA PRÁCTICA 
 
Elaboración de los PNTs correspondientes para determinar las propiedades de flujo de 
los granulados obtenidos en la práctica Nº5 (vía húmeda y vía seca) por métodos 
angulares (cálculo del ángulo de reposo, o ángulo de vertido o de desplazamiento) y por 
métodos de compactación. Para facilitar la redacción de los correspondientes PNTs, el 
alumando contará con la ayuda de la farmacopea Europea para redactar el PNT de 
determinación de las propiedades de flujo del granulado por métodos angulares, y con el 
manual del voluminómetro, para determinar las propiedades de flujo del granulado por el 
método de compactación. 
Para llevar a cabo esta práctica, una de las parejas debe realizar el PNT de la 
determinación de las propiedades de flujo por métodos angulares, y la otra, utilizando el 
voluminómetro. Una vez realizado el PNT, éstos deben intercambiarse y llevar a cabo la 
medida de las propiedades de flujo siguiendo el PNT redactado por los compañeros. 
Finalmente se deben hacer los comentarios oportunos para mejorar la redacción de 
dichos PNTs, y obtener una versión final de cada uno. 
64 
 
65 
 
 
Esquema general de un PNT 
 
 
 
PROCEDIMIENTO NORMALIZADO DE TRABAJO 
PÁGINA 
 
CÓDIGO 
 
TÍTULO 
 
 
Edición: 
 
 
 
REDACTADO POR 
 
 
 
 
 
FECHA: 
 
REVISADO POR 
 
 
 
 
 
FECHA: 
 
SUPERVISADO POR 
UGC 
 
 
 
 
FECHA: 
 
APROBADO POR 
 
 
 
 
 
FECHA: 
 
FECHA DE 
EMISIÓN 
 
 
Anexos incluidos PNTs relacionados 
 
 
 
 
 
 
CONTROL DE MODIFICACIONES (MOD) Y REVISIONES (REV) 
 
Mod/Rev. Nº Pág. modificada Fecha Redactado Revisado Supervisado Aprobado 
 
 
 
 
 
 
 
52 
PNTs de la práctica 
 
 
 
 
PROCEDIMIENTO NORMALIZADO DE TRABAJO 
PÁGINA 
 
CÓDIGO 
 
TÍTULO 
 
 
Edición: 
 
 
 
1. OBJETIVO 
 
 
 
2. DEFINICIÓN 
 
 
3. AMBITO DE APLICACIÓN 
 
 
 
 
4. CONTENIDO 
 
4.1. EQUIPO A UTILIZAR Y REACTIVOS 
 
 
 
4.2. PROCEDIMEINTO 
 
 
 
 
 
 
 
4.3. RESULTADOS EXPERIMENTALES OBTENIDOS Y CONCLUSIONES52 
PNTs de la práctica 
 
 
 
 
PROCEDIMIENTO NORMALIZADO DE TRABAJO 
PÁGINA 
 
CÓDIGO 
 
TÍTULO 
 
 
Edición: 
 
 
 
1. OBJETIVO 
 
 
 
2. DEFINICIÓN 
 
 
3. AMBITO DE APLICACIÓN 
 
 
 
 
4. CONTENIDO 
 
4.1. EQUIPO A UTILIZAR Y REACTIVOS 
 
 
 
4.2. PROCEDIMEINTO 
 
 
 
 
 
 
 
4.3. RESULTADOS EXPERIMENTALES OBTENIDOS Y CONCLUSIONES 
 
 
 
 
 
 
 
 
 
52 
PNTs de la práctica 
 
 
 
 
PROCEDIMIENTO NORMALIZADO DE TRABAJO 
PÁGINA 
 
CÓDIGO 
 
TÍTULO 
 
 
Edición: 
 
 
 
1. OBJETIVO 
 
 
 
2. DEFINICIÓN 
 
 
3. AMBITO DE APLICACIÓN 
 
 
 
 
4. CONTENIDO 
 
4.1. EQUIPO A UTILIZAR Y REACTIVOS 
 
 
 
4.2. PROCEDIMEINTO 
 
 
 
 
 
 
 
4.3. RESULTADOS EXPERIMENTALES OBTENIDOS Y CONCLUSIONES 
 
 
 
 
 
 
 
 
 
52 
PNTs de la práctica 
 
 
 
 
PROCEDIMIENTO NORMALIZADO DE TRABAJO 
PÁGINA 
 
CÓDIGO 
 
TÍTULO 
 
 
Edición: 
 
 
 
1. OBJETIVO 
 
 
 
2. DEFINICIÓN 
 
 
3. AMBITO DE APLICACIÓN 
 
 
 
 
4. CONTENIDO 
 
4.1. EQUIPO A UTILIZAR Y REACTIVOS 
 
 
 
4.2. PROCEDIMEINTO 
 
 
 
 
 
 
 
4.3. RESULTADOS EXPERIMENTALES OBTENIDOS Y CONCLUSIONES 
 
 
 
 
 
 
 
 
 
52

Continuar navegando