Logo Studenta

ADN

¡Estudia con miles de materiales!

Vista previa del material en texto

República Bolivariana de Venezuela.
Ministerio del Poder Popular para la Educación.
Universidad Politécnica Territorial del Estado Trujillo.
Mario Briceño Iragorry, Núcleo Miranda.
El Dividive, Municipio Miranda, Estado Trujillo.
ADN 
Autor:
Katherin Carrillo 
¿Qué es el ADN?
 El ADN, o ácido desoxirribonucleico, es el material que contiene la información hereditaria en los humanos y casi todos los demás organismos. Casi todas las células del cuerpo de una persona tienen el mismo ADN. La mayor parte del ADN se encuentra en el núcleo celular (o ADN nuclear), pero también se puede encontrar una pequeña cantidad de ADN en las mitocondrias (ADN mitocondrial o ADNmt). Las mitocondrias son estructuras dentro de las células que convierten la energía de los alimentos para que las células la puedan utilizar.
 La información en el ADN se almacena como un código compuesto por cuatro bases químicas, adenina (A), guanina (G), citosina (C) y timina (T). El ADN humano consta de unos 3 mil millones de bases, y más del 99 por ciento de esas bases son iguales en todas las personas. El orden o secuencia de estas bases determina la información disponible para construir y mantener un organismo, similar a la forma en que las letras del alfabeto aparecen en un cierto orden para formar palabras y oraciones.
 Las bases de ADN se emparejan entre sí, adenina (A) con timina (T) y citosina (C) con guanina (G); para formar unidades llamadas pares de bases. Cada base también está unida a una molécula de azúcar y una molécula de fosfato. Juntos (una base, un azúcar y un fosfato) se llaman nucleótidos. Los nucleótidos están dispuestos en dos hebras largas que forman una espiral llamada doble hélice. La estructura de la doble hélice es algo parecido a una escalera, los pares de bases forman los peldaños de la escalera y las moléculas de azúcar y fosfato son sus pasamanos.
 Una propiedad importante del ADN es que puede replicarse o hacer copias de sí mismo. Cada hebra de ADN en la doble hélice puede servir como patrón para duplicar la secuencia de bases. Esto es fundamental cuando las células se dividen, porque cada nueva célula necesita tener una copia exacta del ADN presente en la célula antigua.
El ADN es una doble hélice formada por pares de bases unidos a un esqueleto de azúcar-fosfato.
Estructura del ADN
 La molécula de ADN está constituida por una doble cadena en la que cada una de sus hebras está formada por uniones covalentes sucesivas entre un azúcar (desoxirribosa) y una molécula de fosfato. Cada azúcar de las dos cadenas está unido a una de las siguientes 4 bases nitrogenadas adenina (A), guanina (G), citosina (C) y timina (T). Estas 4 bases tienen distintas posibilidades de unión entre ellas a través de puentes de hidrógeno. Así, la A y la T, tienen 2 puentes de hidrógeno, mientras que la G y la C, tienen 3 puentes de hidrógeno. El número de puentes de hidrógeno establece una complementariedad específica entre las bases que determina sus uniones. Sin embargo, en la molécula del ácido ribonucléico (ARN), la T es substituida por el uracilo (U).
 En el ADN, los dos extremos de los «esqueletos» de las dos cadenas complementarias de unidades «fosfato-desoxirribosa-base nitrogenada» (llamadas nucleótidos) terminan en un grupo fosfato en uno de los extremos que se denomina extremo 5’, y un hidroxilo del azúcar en el otro extremo, que se denomina 3’. Así, los dos «esqueletos» de desoxirribosa-fosfato-base se enfrentan en sentido contrario de manera que el extremo 5’ se enfrenta siempre al 3’ a través de las uniones complementarias de las bases, lo que confiere estabilidad a la doble cadena de ADN.
Código genético
 El ADN codifica la información genética mediante combinaciones de las bases, de forma que cada secuencia correlativa de 3 bases (triplete), que se denomina codón, codifica un aminoácido. Así, el codón ATG corresponde a la metionina), y también es el que marca el sitio donde se inicia la lectura para el ARN mensajero (ARNm), que copiará el mensaje de los genes para trasladarlo al citoplasma, donde se formará la proteína que codifica cada gen. Hay también 3 grupos de tripletes (TAA, TGA, TAG) que constituyen codones de parada.
 Como las bases son 4, se pueden producir 43=64 combinaciones diferentes. Sin embargo, como los aminoácidos son 20, el código genético es redundante porque varias combinaciones de tripletes codifican un mismo aminoácido. Por ejemplo, la metionina solo la produce un único triplete, mientras que la glicina es codificada por 4, y la arginina por 6 codones.
Función del código genético para la transcripción del mensaje.
Cuando el ADN ha de trasladar el mensaje necesario para que en el citoplasma se forme una proteína, las 2 cadenas del ADN se separan en la zona que codifica el tipo y orden de los aminoácidos de esa proteína (el gen correspondiente). Ese mensaje va codificado en una de las dos cadenas, y ese mensaje se va a transcribir al ARNm, que lo trasladará al citoplasma para formar la proteína que codifica ese gen. la cadena que lleva el sentido de los aminoácidos de la proteína (cadena con sentido) no es la que se copia sino la otra (cadena con el sentido contrario o antisense), manteniéndose así el orden adecuado (el sentido) de los aminoácidos en el ARNm para formar la proteína. el código del segundo triplete del ADN de la cadena con sentido es el GGG (que corresponde al aminoácido glicina), sin embargo el ARNm, copiará el segundo triplete de la cadena sin sentido, que es CCC, y por tanto el ARNm llevará el código complementario GGG que codifica el aminoácido glicina, que es el que debe tener en segundo lugar la proteína que codifica ese gen. Por el contrario, si el ARNm copiara la cadena con sentido, nunca se mantendría el mensaje. En nuestro ejemplo, si el ARNm hubiera copiado el segundo triplete de la cadena con sentido, el codón del ARNm habría sido CCC (prolina), por lo que el segundo aminoácido de la proteína no habría sido la glicina, sino la prolina, que no mantendría el orden y tipo de aminoácidos del código del gen.
Alteraciones del código genético por mutaciones
 Como ya se sabe, combinaciones de 3 de las 4 bases A, G, T y C, codifican los distintos aminoácidos y, mediante diferentes combinaciones de aminoácidos de la cadena del ADN, se codifican las distintas proteínas. Cualquier cambio que se produzca en la combinación de las bases (o de los tripletes), puede modificar el código del ADN y alterar la expresión de la proteína. Por ejemplo, si en un triplete TCA, que codifica el aminoácido serina, se produce un cambio de la T por una C, el aminoácido que ahora codifica el triplete CCA es una prolina, que es muy diferente de la serina, por lo que se altera la proteína. Estas alteraciones se consideran mutaciones génicas. Sin embargo, no todas las mutaciones van a ser patológicas, ni van a tener el mismo efecto en la proteína.
 Teniendo en cuenta cómo los distintos cambios (mutaciones) afectan a la función de la proteína, esas mutaciones las podemos separar en 2 grupos: a) las que no alteran la función, que pueden ser de 2 tipos: mutaciones silenciosas y mutaciones conservadoras. b) Las que alteran la función, que pueden ser de varios tipos: mutaciones no conservadoras, mutaciones sin sentido y las que se producen por cambios (ausencia o ganancia) de un número de bases que no sea múltiplo de 3.

Continuar navegando