Logo Studenta

electrolisis-soluciones

¡Este material tiene más páginas!

Vista previa del material en texto

- 1 - 
ELECTRÓLISIS 
 
 1. Suponiendo que la oxidación anódica tiene lugar con un rendimiento del 80%. Calcúlese cuánto 
tiempo tendrá que circular una corriente de 5 amperios para oxidar 15 gramos de Mn2+ a MnO4− 
Dato: Masa atómica del Mn = 55. 
Solución. 
 Según las leyes de Faraday, las masas de las distintas sustancias liberadas en la electrolisis son 
directamente proporcionales a los pesos equivalentes de las sustancias y a la cantidad de carga que atraviesa la 
cuba según la expresión: 
F
QgrEqºn =− 
donde: 
• 
grEq
mgrEqºn
−
=− siendo 
v
MgrEq =− y v la valencia red-ox (nº de e− que se transfieren en la 
semirreacción). 
• Q, cantidad de carga que atraviesa el sistema. Q = I · t 
• F, constante de Faraday (F = 96500 C/Eq) 
 
La valencia red-ox se obtiene de la semirreacción de oxidación de Mn2+ a permanganato: 
+−−+ +→−+ H8MnOe5OH4Mn 42
2 
 
( )
5
MnMgrEq =− 
 
 Sustituyendo en la expresión de las leyes de Faraday: 
( )
( ) F
tI
v
MnM
Mnm
oxdRe
⋅
=
−
 
 
Eq
C96500
tA5
Eq
gr
5
55
gr15 ⋅
= 
 
Despejando se obtiene el tiempo en segundos. 
t = 26318 s 
 
 Este es el tiempo teórico, para calcular el tiempo real hay que tener en cuenta el rendimiento del 
proceso. 
100
t
t
R
R
T ⋅= 
seg 17min 8 H 9s32898100
80
26318100
R
t
t TR <>=⋅=⋅= 
 
 
 
 - 2 - 
 2. Una corriente de 4 amperios circula durante 1 hora y 10 minutos a través de 2 células electrolíticas 
que contienen, respectivamente, sulfato de cobre (II) y cloruro de aluminio. 
Datos: Masas atómicas: Cu = 63´5 y Al = 27´0; Constante de Faraday F = 96.500 C·eq−1 
a) Escriba las reacciones que se producen en el cátodo de ambas células electrolíticas. 
Solución. 
En la primera cuba (CuSO4 → Cu2+ + SO42−) se deposita el cobre según: 
Cue2Cu 2 →+ −+ 
 
 En la segunda cuba (Al2(SO4)3 → 2Al3+ + 3SO42−) se deposita el aluminio según: 
Al3+ + 3e− → Al 
 
b) Calcule los gramos de cobre y de aluminio metálicos que se habrán depositado. 
Solución. 
 Según las leyes de Faraday, las masas de las distintas sustancias liberadas en la electrolisis son 
inversamente proporcionales a los pesos equivalentes de las sustancias y directamente proporcionales a la 
cantidad de carga que atraviesa la cuba según la expresión: 
F
QgrEqºn =− 
Donde: 
• 
grEq
mgrEqºn
−
=− siendo 
v
MgrEq =− y v la valencia red-ox (nº de e− que se transfieren en la 
semirreacción). 
• Q, cantidad de carga que atraviesa el sistema. Q = I · t 
• F, constante de Faraday (F = 96500 C/Eq) 
 
Por estar en serie, por las dos cubas pasa la misma cantidad de corriente (e−), por lo que en ambas 
cubas se depositará el mismo número de equivalentes, no teniendo que coincidir las masas de los metales 
depositadas, ya que estas además dependen de la masa equivalente, característica de cada elemento y del 
número de e− que se transfieren. 
eq 174'0
Eq
C96500
s4200A4
F
tI
F
QgrEqºn =⋅=⋅==− 
 Para el Cu: 
( ) ( )( )
( )
( )
( )Cuv
CuM
Cum
CugrEq
CumCugrEqºn =
−
=− 
( ) ( ) gr 5'5Cum 
eq
gr
2
5'63
Cumeq 174'0 =





= 
 
 Para el Al: 
( ) ( )( )
( )
( )
( )Alv
AlM
Alm
AlgrEq
AlmAlgrEqºn =
−
=− 
( ) ( ) gr 6'1Alm 
eq
gr
3
27
Almeq 174'0 =





= 
 
 
 
 - 3 - 
 3. Se hace la electrólisis del NaCl en disolución acuosa utilizando la corriente de 5 A durante 30 
minutos: 
Datos: Eº Na+/Na = −2,71 V; Eº Cl2/ 2Cl− = 1,36 V 
a) ¿Qué volúmenes de gases se obtienen en el ánodo y en el cátodo a 1 atm y 25 ºC? 
Solución. 
 Por tratarse de una disolución acuosa y tener el sodio un potencial de reducción inferior a −0’41 v 
(Potencial de reducción del hidrogeno en disoluciones neutras) en el cátodo de la cuba se reducirán los 
protones presentes en el medio, debidos a la autoinización del agua, a hidrógeno, en el ánodo se oxidan los 
iones Cl− a cloro molecular (Cl2). 
• Cátodo: ( )gHe2H2 2→+ −+ 
• Ánodo: ( )gCle2Cl2 2→− −− 
El volumen de gases producidos se calculan a partir del número de moles de hidrógeno reducidos en 
el cátodo y el número de moles de cloro oxidados en el ánodo, mediante las leyes de Faraday. 
F
QgrEqºn =− 
• vnv
M
m
v
M
m
P
mgr-Eq ºn
Eq
⋅==== Donde n es el número de moles y v la valencia 
redox. 
• Q = I·t 
F
tIvn ⋅=⋅ 
 Cátodo: ( ) ( ) ( ) ( ) mol 047'0
mol
Eq2Eq
C96500
s 6030A 5
HvF
tIHn
F
tIHvHn
doxRe2
2doxRe22 =
⋅
×⋅
=
⋅
⋅
=⇒
⋅
=⋅ 
 Ánodo: ( ) ( ) ( ) ( ) mol 047'0
mol
Eq2Eq
C96500
s 6030A 5
ClvF
tICln
F
tIClvCln
doxRe2
2doxRe22 =
⋅
×⋅
=
⋅
⋅
=⇒
⋅
=⋅ 
 Conocidos los moles, el volumen se calcula mediante la ecuación de gases ideales. 
( ) ( ) L 14,1
atm 1
K 298
Kmol
Latm0'082mol 047'0
P
TRnClVHV 22 =
⋅
⋅
⋅
⋅
=
⋅⋅
== 
 
b) ¿Cómo tendría que estar el electrolito en la celda `para que se depositase sodio y qué diferencia de 
potencial habría que aplicar? 
Solución. 
 Para que los iones metálicos, cuyos potenciales de reducción sean inferiores a −0’41 v se reduzcan en 
el cátodo de una cuba electrolítica, deberán estar fundidos, nunca en disolución acuosa ya que en este último 
caso se reducirán los protones procedentes de la auto ionización del agua presente en la disolución, antes que 
los iones metálicos. 
 
 La mínima diferencia de potencial que habrá que aplicar, sin tener en cuenta efectos de sobre tensión, 
será igual o mayor que el potencial del proceso en valor absoluto. 
• Cátodo (Reducción). v71'2Eº Nae1Na −=→+ −+ 
• Ánodo (Oxidación). v 36'1Eº Cle2Cl2 2 =→− −− 
Reacción total: 2ClNa2Cl2Na2 +→+
−+ 
( ) v07'436'141'2EEE oÁnodooCátodooT −=−−=−= 
 4’07 v es el mínimo potencial teórico necesario para poder efectuar la electrolisis en condiciones de 
reversibilidad termodinámica, es decir, de forma infinitamente lenta y sin que pase corriente a través de la 
cuba. En la práctica la electrolisis se verifica de una forma irreversible, aplicando entre los electrodos una 
diferencia de potencial algo superior a la teórica. 
 
 
 - 4 - 
4. Para obtener 3,08 g de un metal M por electrólisis, se pasa una corriente de 1'3A a través de una 
disolución de MCl2 durante 2 horas. 
Datos: Constante de Faraday F = 96500 C·eq−1; R = 0,082 atm·L·mol−1·K−1. 
Calcule: 
a) La masa atómica del metal. 
Solución. 
 Conocida la cantidad de corriente que atraviesa la cuba (Q=I·t), se puede calcular el número de 
equivalentes gramo que se han depositado según las leyes de Faraday. 
eq 097'0
eq
C96500
s 60602A 3'1
F
tI
F
QgrEqºn =××⋅=⋅==− 
 La sal MCl2 nos informa de que trata de un metal bivalente. 
( ) ( )aqCl2aqMMCl 2OH2 2 −+ + → 
 
Por tratarse de un metal bivalente, en el cátodo se habrá producido la reacción: 
Me2M 2 →+ −+ 
 Siendo por tanto su peso equivalente 




 =
v
MPeq 
 
 Conocido el número de equivalentes que se han depositado y la valencia del metal se calcula la masa 
atómica del metal. 
mol
gr5'63mol
eq2
eq 0'097
gr 08'3
v
grEqºn
mM
v
M
m
P
mgr-Eq ºn
Eq
=⋅=⋅
−
=⇒== 
 Masa atómica que corresponde al cobre. 
 
b) Los litros de cloro producidos a 1 atmósfera de presión y 273 K. 
Solución. 
 El numero de equivalentes gramo que se depositan en el cátodo (se reducen) son el mimo que se 
liberan en el ánodo (se oxidan). 
2Cle2Cl2 →−
−− 
( ) ( )( )
( )
( ) ( ) vCln
v
ClM
Clm
ClP
Clm
Clgr-Eq ºn 2
2
2
2Eq
2
2 ⋅=== 
( ) ( ) mol 048'0
2
0'097
v
Clgr-Eq ºn
Cln 22 === 
 Moles que en condiciones normales (T =273 K, P =1atm) ocupan un volumen de: 
L 1'086mol 048'0mol
L4'22n4'22V .N.C =⋅=⋅= 
 
5. Se tiene una disolución acuosa de sulfato de cobre (II). 
Datos.- Masa atómica del Cu = 63,5, NA = 6,023 · 1023 átomos/mol; F = 96500 culombios/Eq. 
a. Calcule la intensidad de corriente que se necesita pasar a través de la disolución para depositar 5 g de 
cobre en 30 minutos. 
Solución. 
 Según las leyes de Faraday: 
F
QgrEqºn =− 
Donde: 
Q = I · t 
v
M
m
grEq
mgrEqºn =
−
=− 
 
 
 - 5 - 
Siendo v la valencia redox (número de electrones que se transfieren en la semireacción). 
 
 El cobre se deposita en el cátodo según la semireacción:Cue2Cu 2 →+ −+ v = 2 
 
 Sustituyendo en las leyes de Faraday: 
( )
( )
( )
( ) A 4'8s
C4'8
s 6030mol
gr5'63
Eq
C96500mol
Eq2gr 5
tCuM
FvCum
I
F
tIv
CuM
Cum Cu
Cu ==
×⋅
⋅⋅
=
⋅
⋅⋅
=⇒
⋅
= 
 
b. ¿Cuántos átomos de cobre se habrán depositado? 
Solución. 
La forma más sencilla de resolverlo es calcular a partir de la masa de cobre depositada, el número de 
moles y conocidos estos, calcular el número de átomos mediante el número de Avogadro. 
( ) ( )( ) mol 079'0
mol
gr63'5
gr 5
CuM
CumCun === 
 
( ) at107'4molat1002'6mol 079'0NCunAtºn
2223
A ⋅=×⋅=⋅= 
 
 6. Dos celdas electrolíticas que contienen nitrato de plata(I) y sulfato de cobre (II), respectivamente, 
están montadas en serie. Halle los gramos de cobre que se depositarán en la segunda celda, si en la primera se 
depositan 2 gramos de plata. 
DATOS: Masa atómicas: Ag = 108; Cu = 63’5 
Solución. 
 Por dos celdas electrolíticas conectadas en serie, como muestra la figura, pasa la misma cantidad de 
corriente, y por tanto según las leyes de Faraday 




 =−
F
QgrEqºn en las dos se depositaran ó se desprenderán 
el mismo número de equivalentes. 
 
• Cátodo I: 1 v AgeAg =→+ −+ 
• Cátodo II: 2 v Cue2Cu 2 =→+ −+ 
 
( ) ( )III CugrEqºnAggrEqºn −=− 
 
( )
( )
( )
( )
( )
( )
( )
( )
CuAg
EqEq v
CuM
Cum
v
AgM
Agm
 : 
CuP
Cum
AgP
Agm
== 
 
( ) ( ) gr 59'0Cum 
Eq2
5'63
Cum
Eq1
108
gr 2
== 
 
 
 
 - 6 - 
 7. En la electrólisis de una disolución acuosa que contiene sulfato de zinc y sulfato de cadmio, se 
deposita todo zinc y el cadmio, para lo cual se hace pasar una corriente de 10 amperios durante 2 horas, 
obteniéndose una mezcla de ambos metales de 35’44 g. Calcule el porcentaje en peso de zinc en la mezcla 
metálica. 
DATOS: Masas atómicas: Cd = 112’4 Zn = 65’4 
Solución. 
 El número total de equivalentes gramo que se han depositado es función únicamente de la cantidad 
de carga que atraviesa el sistema, según las leyes de Faraday. 
Eq 75'0
Eq
C96500
s 60602A 10
F
tI
F
QgrEqºn =××⋅=⋅==− 
 Por otro lado, el número total de equivalentes depositado será la suma de los equivalentes de zinc y 
cadmio. 
( ) ( )CdEqZnEqEqT += 
 
 El zinc y el cadmio se depositan según las semireacciones de reducción: 
Zne2Zn 2 →+ −+ 
Cde2Cd 2 →+ −+ 
 
( )
( )
( )
( )
CdZn
T
v
CdM
Cdm
v
ZnM
ZnmEq += 
 Si denominamos x a la masa de zinc, 35’44 − x será la masa de cadmio, sustituyendo en la igualdad 
anterior se obtiene una ecuación de primer grado. 
2
4'112
x44'35
2
4'65
x75'0 −+= 
265
x44'35
723
x75'0
′
−
+
′
= 
( )x44'35 2'56x7'322'567'3275'0 −+=⋅⋅ 1'26x = 
 
 El porcentaje en peso de zinc en la mezcla es del 26’1 %. 
 
8. Calcule la cantidad de aluminio que podrá obtenerse por electrólisis de una sal fundida de 
aluminio (III), utilizando una intensidad de 1000 A, durante una hora, si el rendimiento es del 80%. Datos: 
Masa atómica: Al = 27; F (Faraday) = 96500C·eq−1 
Solución. 
 Según las leyes de Faraday, las masas de las distintas sustancias liberadas en la electrolisis son 
inversamente proporcionales a los pesos equivalentes de las sustancias y directamente proporcionales a la 
cantidad de carga que atraviesa la cuba según la expresión: 
F
QgrEqºn =− 
Donde: 
• 
EqP
mgrEqºn =− siendo 
v
MPEq = , donde M es la masa atómica y v la valencia red-ox (nº de e− 
que se transfieren en la semirreacción). 
• Q, cantidad de carga que atraviesa el sistema. Q = I · t 
• F, constante de Faraday (F = 96500 C/Eq) 
 
La reducción del Al3+ se llevará a cabo en el cátodo de la cuba según la reacción: 
 
( ) 



=→+ −+ Eq
gr
3
27AlP Ale3Al Eq
3 
 
 
 
 - 7 - 
 Aplicando las leyes de Faraday 
( ) ( )( ) F
tI
AlP
Alm 
F
QAlgrEqºn
Eq
⋅
==− 
 Sustituyendo por los valores y despejando: 
( ) ( ) gr 8'335Alm 
Eq
C 96500
s 3600
s
CA 1000
Eq
gr 9
Alm
=
⋅





= 
 
 Los 335’8 gramos es la masa teórica de aluminio que se podría obtener si el rendimiento fuese del 
100%. Con un rendimiento del 80%, la masa real de aluminio será: 
( ) gr 6'268
100
808'335
100
Rmm 100
m
m
%R TeóricaalRe
Teórica
alRe =⋅=⋅=⇒⋅= 
 
9. Septiembre 2000. En la electrólisis de una disolución acuosa de cloruro de potasio se obtiene 
hidróxido de potasio, hidrógeno molecular y cloro molecular. Determine: 
a- El proceso que tiene lugar en cada electrodo, señalando al mismo tiempo su naturaleza anódica o 
catódica. ¿Por qué se forma hidróxido de potasio? 
b- ¿Qué volumen (en L) de hidrógeno y cloro gaseosos, medidos a 0°C y 1 atm, se obtendrán al utilizar una 
corriente de 25 amperios durante 2 horas? 
DATOS:1 F = 96500C·eq−1; R = 0’082 atm·L·mol-1·K-1; Masas atómicas: Cl = 35’5; H = 1 
Solución. 
a. 
 
 
• Cátodo (Reducción): 2He2H2 →+ −+ 
• Ánodo (Oxidación): 2Cle2Cl2 →− −− 
 
Al eliminarse protones (H+) en la reacción catódica, el equilibrio de ionización del agua se desplaza 
hacia la derecha, aumentando la concentración del oxidrilos (OH−), que junto con los cationes potasio (K+) 
procedentes de la disociación de la sal (KCl), forman una disolución de hidróxido potásico totalmente 
disociada, debido a su fortaleza como base. 
 
 b. Para calcular el volumen de un gas formado en un proceso electrolítico es necesario conocer el 
número de moles formados. El número de moles formados se calcula mediante las leyes de Faraday. 
F
Qvn:
vnv
M
m
v
M
m
P
mgrEqºn
F
QgrEqºn
Eq
=⋅






⋅=⋅===−
=−
 
 
 La valencia Red-ox, tanto para el hidrógeno molecular como para el cloro molecular, es la misma 
v = 2 (nº de e− que se transfieren en la semirreacción por mol de compuesto formado), Q es la cantidad de 
corriente que atraviesa el sistema, por lo tanto, los moles formado de hidrógeno y cloro molecular también 
será los mismos. 
 
 
 - 8 - 
( ) ( )
( )
mol 87'1
Eq
C96500mol
Eq 2
s 36002s
CA 25
Fv
tI
Fv
QClnHn 22 =
⋅
×⋅
=
⋅
⋅
=
⋅
== 
 
( ) mol 3'74mol 87'12Hn2n 2T =⋅== 
 
 Conocido el número de moles gaseosos, con la ecuación de gases ideales se calcula el volumen. 
P
TRnV TRnVP ⋅⋅=⋅⋅=⋅ 
L 5'83
atm 1
K 273
K mol
L atm 082'0mol 74'3
V =
⋅⋅
= 
 
10. Septiembre 2001. Para depositar en uno de los electrodos de una célula electrolítica el níquel 
contenido en 500 mL de una disolución 0,5 M de sulfato de níquel(II), se hace pasar por ella una corriente de 
10 A durante un cierto tiempo. Calcule: 
a) El tiempo necesario para realizar la operación anterior, teniendo en cuenta que el rendimiento de la 
electrolisis es del 80%. 
b) Si la cantidad de electricidad empleada en la electrolisis anterior, se utilizara para electrolizar agua 
¿qué cantidades de oxígeno e hidrógeno se obtendrían, si el rendimiento de la operación es también 
del 80% ? 
DATOS: 1 F = 96500C·eq−1. Masas atómicas: Ni = 58,7 ; O = 16 ; H = 1 
Solución. 
 a. El níquel contenido en la cuba se deposita en el cátodo mediante un proceso de reducción, según la 
semirreacción: 
( ) mol
Eq 2Ni v Nie2Ni 2 =→+ −+ 
 Según las leyes de Faraday, el número de equivalentes de níquel depositados es directamente 
proporcional a la cantidad de carga que atraviesa el sistema. 
F
QgrEqºn =− 
 
• Q = I · t 
• ( ) ( ) vLVMLVMn
disolución
vnv
M
m
vM
m
P
mgr-Eqºn
Eq
⋅⋅=






⋅=
=⋅==== 
 
Sustituyendo 
( ) ( )
I
FvLVM t 
F
tIvLVM ⋅⋅⋅=⋅=⋅⋅ 
 
( ) s 4825sCA 10
Eq
C 96500mol
Eq 2L 10500L
mol 5'0
t
3
=
⋅⋅×⋅
=
−
 
 
 El tiempo calculado es el teórico, es decir si el rendimiento fuera del 100%. Si el rendimiento es del 
80% y queremos que se sigua produciendo la misma cantidad de níquel, el 80% del tiempo real debe ser igual 
al tiempo teórico. 
23 04h 1s 6032
10080
s 4825
%80
t
 t t t%80 TRTR ′′′<>≅=== 
 
 
 
 
 - 9 - 
 b. Según la 2ª ley de Faraday, si la cantidad de electricidad empleada en la electrolisis del agua es la 
misma que la utilizada en ladel níquel, el número de equivalentes gramos depositados o liberados serán igual. 
( ) ( ) ( )22 Ogr-EqnºHgr-EqºnNigr-Eqºn == 
 
 La descomposición del agua mediante un proceso electrolítico se realiza mediante las siguientes 
semireacciones: 
• Cátodo (Reducción): ( ) mol
eq 2H v He2H2 22 =→+
−+ 
• Ánodo(Oxidación): ( ) mol
eq 4O v OHOe4OH4 222 =+→−
−− 
 
En el apartado a, se ha establecido que el nº Eq-gr = n · v 
( ) ( ) ( ) ( ) ( ) ( )222222 OvOnHvHnNivNin ⋅=⋅=⋅ ++ 
 
 Teniendo en cuenta que el Ni2+ se encuentra en disolución, se pueden establecer las siguientes 
igualdades: 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )2
222
222
222
2
222
222
222
Ov
NivNiVNiMOn OvOnNivNiVNiM
Hv
NivNiVNiMHn HvHnNivNiVNiM
+++
+++
+++
+++
⋅⋅
=⋅=⋅⋅
⋅⋅
=⋅=⋅⋅
 
 Sustituyendo por los valores. 
( )
( ) mol 125'0
mol
eq4
mol
eq2L10500L
mol5'0
On
mol 25'0
mol
eq2
mol
eq2L10500L
mol5'0
Hn
3
2
3
2
=
⋅×⋅
=
=
⋅×⋅
=
−
−
 
 Conocidos los moles de hidrógeno y oxígeno obtenidos, se calculas sus masas. 
( ) ( ) ( )
( ) ( ) ( ) gr 4mol
gr23mol 25'0OMOnOm
gr 5'0mol
gr2mol 25'0HMHnHm
222
222
=⋅=⋅=
=⋅=⋅=
 
 
 
 
 - 10 - 
11. Junio 2001. Se conectan dos cubas electrolíticas en serie. En la primera se coloca una disolución 
de ácido sulfúrico y en la segunda, una disolución de nitrato de cobre (II). Después del paso de una 
determinada cantidad de electricidad, en la primera cuba se recogen 600 ml de hidrógeno molecular a 27ºC y 
1 atm de presión. 
a) Las semirreacciones que tienen lugar en los electrodos de ambas cubas. 
b) El peso de cobre depositado en la segunda cuba. 
Datos: Faraday = 96500C·eq−1 ; R = 0.082 atml/molK ; Masas atómicas: Cu = 63.5 ; H = 1. 
Solución. 
a) En el cátodo de la primera cuba se reducirán los protones (H+) a hidrógeno molecular (H2), en el ánodo se 
oxidarán los iones hidróxilos (OH−), presentes por la autoionización del agua, a oxígeno molecular (O2), ya 
que el otro anión presente (SO42−) está en su máximo estado de oxidación (S6+) y no puede seguir oxidándose. 
 
• Cuba I: 




+→−
→+
−−
−+
OH2Oe4OH4:II Ánodo
 He2H2:I Cátodo
22
2 
• Cuba II: 




+→−
→+
−−
−+
OH2Oe4OH4:II Ánodo
 Cue2Cu:I Cátodo
22
2
 
 
b) Según las leyes de Faraday, el número Eq-gr liberados ó depósitos en la electrólisis es función de la 
cantidad de corriente que atraviesa la cuba. Si dos cubas se conectan en serie, por las dos pasa la misma 
cantidad de corriente y por tanto en ambas se liberan o depositan el mismo número de equivalente. 
( ) ( )III2 CugEqºnHgrEqºn −=− 
La definición de grEqºn − es: 
( )
( )
( )
( )CuP
Cum
HP
Hm
Eq2Eq
2 =
⋅
 
Teniendo en cuenta que la cantidad de hidrogeno obtenida en la electrolisis se calcula a partir del volumen, 
temperatura y presión a la que es recogido, conviene expresar el número de Eq-gr de hidrógeno en función del 
V, T y P mediante la ecuación de gases ideales a partir den número de moles (n(H2)). 
( )
( )
( )
( )
( )CuP
Cum
Hv
HM
Hm
Eq
2
2
2 = 
( )
( ) ( )
( )
( )CuP
CumHv
HM
Hm
Eq
2
2
2 =⋅ 
( ) ( ) ( )( )CuP
CumHvHn
Eq
22 ⋅ ( )
( )
( )CuP
CumHv
RT
VP
Eq
2
HH 22 =⋅
⋅
 
( ) ( ) ( )CuPHv
RT
VP
Cum Eq2
HH 22 ⋅⋅
⋅
= 
 La valencia se obtiene de las semireacciones, siendo el número de e− que se transfieren por mol de 
compuesto. 
( )
( ) Eq
gr75'31
mol
Eq2
mol
gr5'63
v
MCuP Cue2Cu
 mol
Eq2Hv He2H2
Eq
2
22
===→+
=→+
−+
−+
 
 
 
 - 11 - 
 Sustituyendo por los valores: 
( ) gr 55'1Eq
gr75'31mol
Eq2
K 300
K mol
L atm082'0
L10600atm 1Cum
3
=⋅⋅
⋅
×⋅
=
−
 
 
12. Septiembre 1999. Se dispone de dos cubas electrolíticas conectadas en serie con disoluciones de 
nitrato de plata y de ácido sulfúrico, respectivamente. Se hace pasar corriente de forma que en la primera se 
depositan 0’2325 gramos de plata. Calcule el volumen de hidrogeno medido a 25°C y 1 atmósfera de presión, 
que se desprenderá en la segunda cuba. 
Datos: Masas atómicas; Ag = 108; H = 1 
1 Faraday = 96500 C·eq−1 
Solución. 
 Por estar conectadas en serie por ambas cubas pasa la misma cantidad de corriente y por tanto en 
ambas se depositan o liberan el mismo número de Eq-gr. 
 
 En el cátodo de la 1ª cuba se reducen los cationes Ag+ a plata metálica (Ag), en la 2ª cuba son los 
protones (H+) provenientes de la disociación de ácido sulfúrico los que se reducen en el cátodo a hidrógeno 
molecular (H2). 
• Cuba I: Cátodo (Reducción) ( ) ( ) Eq
gr108
1
108AgP 1Ag v Age1Ag Eq ===→+
−+ 
• Cuba II: Cátodo (Reducción) ( ) 2H v He2H2 22 =→+ −+ 
 
( ) ( )II2I HgEqºnAggrEqºn −=− 
( )
( )
( )
( )2Eq
2
Eq HP
Hm
AgP
Agm ⋅
= 
( )
( )
( )
( )
( )2
2
2
Eq
Hv
HM
Hm
AgP
Agm
= 
( )
( )
( )
( ) ( )22
2
Eq
Hv
HM
Hm
AgP
Agm
⋅= 
( )
( ) ( ) ( )22Eq
HvHn
AgP
Agm
⋅= 
( )
( ) ( )2
HH
Eq
Hv
RT
VP
AgP
Agm 22 ⋅
⋅
= 
( )
( ) ( )2HEqH HvP
RT
AgP
Agm
V
2
2 ⋅
⋅= 
 Sustituyendo por los valores del enunciado: 
mL 26L 026'0
mol
Eq2atm 1
K 298
Kmol
Latm082'0
Eq
gr108
gr 2325'0V
2H =
⋅
⋅
⋅
⋅
⋅= 
 
 
 
 - 12 - 
13. Junio 1999. Se electroliza una disolución acuosa de sulfato de cobre(II) durante 30 minutos, 
utilizando electrodos inertes, sobre los que se aplica una corriente de intensidad 5 amperios. En dicha 
electrólisis se deposita un metal y se desprende un gas. Escriba: 
a) Semirreacción catódica 
b) Semirreacción anódica 
Calcule: 
c) Gramos que se obtienen del metal depositado 
d) Volumen de gas que se desprende en las condiciones de trabajo (Temperatura = 25ºC y P = 1 atm). 
DATOS: Masas atómicas, O = 16; Cu = 63.5; F = 96500C·eq−1; R = 0.082 atm·L.K−1.mol−1 
Solución. 
 
a) Semirreacción catódica: Reducción 
( ) Eq
gr75'31
2
5'63
v
MCuP Cue2Cu Eq
2 ===→+ −+ 
b) Semirreacción anódica: Oxidación. De los aniones presentes en la cuba ( )−− OH ,SO 24 solo puede 
oxidarse el OH−, ya que el ión sulfato esta en su máximo estado de oxidación. 
( ) Eq
gr8
4
32
v
MOP OH2Oe4OH4 2Eq22 ===+→−
−− 
 
c) Según las leyes de Faraday: 
( )
F
QCugrEqºn =− 
Donde: 
( ) ( )( )







=
⋅=
=−
Eq
C96500F
tIQ
CuP
CumCugrEqºn
Eq
 
( )
( ) ( )
( )
F
tICuP
Cum 
F
tI
CuP
Cum Eq
Eq
⋅⋅
=
⋅
= 
( ) gr 96 '2
Eq
C96500
s 6030
s
CA 5Eq
gr75'31
Cum =
×⋅




⋅
= 
 
d) d) ( )
F
QOgrEqºn 2 =− 
( ) ( )( )
( )
( )
( )
( )
( ) ( ) ( ) ( )2222
2
2
2
2
2Eq
2
2 OvOnOvOM
Om
Ov
OM
Om
OP
Om
OgrEqºn ⋅====− 
 Sustituyendo: 
( ) ( ) ( ) ( )2222 OvF
tIOn 
F
QOvOn
⋅
⋅
==⋅ 
 
 
 - 13 - 
( ) mol 023'0
mol
Eq4Eq
C96500
s 6030
s
CA 5
On 2
⋅
×⋅





= 
 Mediante la ecuación de gases ideales y con las condiciones a las que se recoge el oxígeno se calcula 
su volumen. 
( )
mL 570L 570'0
atm 1
K 298
Kmol
Latm0'082mol 023'0
P
TROn
V 2O2 ==
⋅
⋅
⋅
⋅
=
⋅⋅
= 
 
14. Junio 1998. Se electroliza una disolución de ácido sulfúrico, usando electrodos inertes, durante 
un periodo de 20 minutos. El hidrógeno producido se recoge sobre agua a una presión total de 750 mm de Hg 
y a una temperatura de 27 ºC, obteniéndose en estas condiciones 200 mL. 
a) Indique en que electrodo se desprende él hidrogeno., cuál es la reacción correspondiente y cuál es el 
equivalente electroquímico del hidrogeno. 
b) Calcule la intensidad de la corriente aplicada. 
DATOS: F = 96500C·eq−1; R = 0’082 atm·L/K·mol; Presión de vapor del agua a 27 ºC = 26 mm Hg; H = 1 
Solución. 
 a) El hidrógeno se obtienen a partir de los protones presentes en la disolución debido a la disociación 
del ácido sulfúrico ( )+− + → H2SOSOH 4OH42 2 . Los protones se reducen en el cátodo a hidrógeno 
molecular captando electrones según la semirreacción: 
( ) ( )( ) Eq
gr1
mol
Eq2
mol
gr2
Hv
HM
HP He2H2
2
2
2Eq2 ===→+
−+ 
Valencia red-ox es el número de electronesque se transfieren en la semiracción por mol de compuesto. 
 
 b) La intensidad de la corriente se calcula a partir de las leyes de Faraday. 
F
Qgr-Eqºn = Donde: 




⋅=
=
tIQ
P
mgr-Eqºn
Eq 
F
tI
P
m
Eq
⋅
= 
 Puesto que el hidrógeno se recoge en forma gaseosa conviene expresar la igualdad anterior en 
función del número de moles de hidrógeno. 
( )
( )
( ) ( )( )
( )
( )
( )
F
tI
Hv
HM
Hm
:
Hv
HM
HP
F
tI
HP
Hm
2
2
2
2
2
2Eq
2Eq
2
⋅
=






=
⋅
=
 
Ordenando y teniendo en cuenta que n
M
m
= (nº de moles) 
( )
( ) ( ) ( ) ( ) F
tIHvHn 
F
tIHv
HM
Hm
222
2
2 ⋅=⋅
⋅
= 
 
 El número de moles de hidrógeno se obtiene mediante la ecuación de gases ideales, pero hay que 
tener en cuenta que se recoge mezclado con vapor de agua, por lo que se deberá usar la presión parcial de 
hidrógeno en la mezcla. Teniendo en cuenta que la presión total es la suma de la presiones parciales: 
Hg mm 72426750PPP PPP OHHOHH 2222 =−=+=+= 
 Conocida la presión parcial de hidrógeno se calcula el número de moles. 
 
 
 - 14 - 
TR
VP
n RTnVP 2
222
H
HHH ⋅
⋅
==⋅ 
mol 1074'7
J 300
Kmol
Latm082'0
L10200atm
760
724
n 3
3
H2
−
−
×=
⋅
⋅
⋅
×⋅
= 
 Conocidos los moles de hidrógeno calculamos la intensidad. 
( ) ( ) ( ) ( )
t
FHvHn
I 
F
tIHvHn 2222
⋅⋅
=
⋅
=⋅ 
( )A
s
C 25'1
s 6020
Eq
C 96500mol
Eq 2mol1074'7
I
3
=
×
⋅⋅×
=
−
 
 
 15. Junio 1997. Se dispone de una disolución acuosa de sulfato de cobre (II) de concentración 
4×10−2 M. Calcule el tiempo necesario para electrolizar completamente el cobre contenido en 250 ml de dicha 
disolución al pasar una corriente de 1’2 amperios, si el rendimiento del proceso es del 90%. 
DATOS: Masas atómicas: O = 16,0; S = 32,0; Cu = 63,5 
Constante de Faraday: 96.500C·eq−1 
Solución. 
 El cobre se reduce en el cátodo según la siguiente semireacción: 
( ) Eqgr75'312
5'63
v
MCuP Cue2Cu 2Eq
2 ===→+ +−+ 
 Según las leyes de Faraday: 
F
Qgr-Eqºn = Donde: 




⋅=
=
tIQ
P
mgr-Eqºn
Eq 
F
tI
P
m
Eq
⋅
= (1) 
 Para calcular la masa de Cu2+ se tiene en cuenta que el sulfato de cobre (II), como sal que es, está 
totalmente disociado según: 
−+ +→+ 24
2
24 SOCuOHCuSO 
 Por lo tanto M104CuSOCu 24
2 −+ ×== . Conocida la concentración de Cu2+ se calcula su masa. 
( ) mol 01'0L10250Lmol104VMCun 322 =×⋅×=⋅= −−+ 
( ) ( ) ( ) gr 635'0molgr63'5mol 01'0CuMCunCum 222 =⋅=⋅= +++ 
 
 Sustituyendo los datos en la expresión (1), se calcula el tiempo teórico. 
s 3'1608
s
JA 2'1Eq
gr31'75
Eq
C96500gr 635'0
IP
Fmt 
F
tI
P
m
EqEq
=





⋅
⋅
=
⋅
⋅
=
⋅
= 
 
 Este es el tiempo teórico, para calcular el tiempo real hay que tener en cuenta el rendimiento del 
proceso. 
100
t
t
R
R
T ⋅= 
s 2680100
60
1608100
R
t
t TR =⋅=⋅= 
 
 
 - 15 - 
16. Junio 1997. Para platear por ambas cara con 0’1 mm. de espesor una medalla de 2 cm. de 
diámetro y 0’4 mm. de altura, se efectúa una electrólisis de una disolución de nitrato de plata, haciendo actuar 
la medalla como cátodo y aplicando una corriente de 10 amperios. Calcule el tiempo necesario para llevar a 
cabo dicho plateado. 
DATOS: Masa atómica de la Ag =107’9 
 Densidad de la plata = 10’5 g/cm3 
 F = 96.500C·eq−1 
Solución. 
 El problema tiene dos partes claramente distintas. Primero habrá que calcular la masa de plata 
necesaria para recubrir la moneda y a continuación el tiempo necesario para llevar a cabo el proceso 
electrolítico. 
 
El calculo de la masa de plata lo haremos mediante la densidad de la plata y el volumen de plata 
necesario. El volumen de plata se puede calcular teniendo en cuenta que una moneda es un cilindro, y por 
tanto el volumen de plata será el volumen de la moneda recubierta menos el volumen de la moneda. Si 
denominados V al volumen de la moneda plateada y Vm al de la moneda: 
mAg VVV −= 
 El volumen de un cilindro es: hRπV 2 ⋅= 
 El radio de la moneda se obtiene dividiendo el diámetro por 2. R = 1 cm 
 Si nos fijamos en la figura 
( ) ( )
m
2
mm
m
2
m
hRπV
e2heRπV
⋅=
+⋅+=
 
( ) ( ) ( ) ( )[ ]m2mm2mm2mm2mAg hRe2heRπhRπe2heRπV ⋅−+⋅+=⋅−+⋅+= 
Sustituyendo por la dimensiones del enunciado en cm: 
( ) ( )[ ] 322Ag cm 0666'004'0101'0204'001'01πV =⋅−⋅+⋅+= 
 
 Conocido el volumen de plata se calcula la masa con la densidad. 
gr 6993'0
cm
gr5'10cm 0666'0dVm 3
3
AgAgAg =⋅=⋅= 
 
 Una vez conocida la masa de plata, mediante las leyes de la electrólisis calculamos el tiempo 
necesario. La plata se obtiene mediante un proceso de reducción: 
( ) ( )−−+ ==→+ enAgn : 
1
1
e
Ag : Age1Ag - 
( )
( ) F
tI
AgM
Agm ⋅
= 
( )
( ) s 5,62
s
JA 10Eq
gr107'9
Eq
C96500gr 6993'0
IAgM
FAgmt =





⋅
⋅
=
⋅
⋅
= 
 
 
 
 
 - 16 - 
 17. Una disolución de sulfato de cobre (II), que contiene 0,400 g de ión Cu2+,se electroliza entre 
electrodos de platino hasta que la totalidad del cobre queda depositado en el cátodo; se continua después la 
electrolisis siete minutos más. Durante la electrolisis el volumen de la disolución se mantiene 100 cm3, y la 
intensidad de la corriente en 1’20 A durante todo el proceso. Suponiendo un rendimiento del 100%. 
a. Hallar el tiempo necesario para el depósito completo del cobre. 
b. Que ocurre en el ánodo mientras dura la deposición de cobre, y lo que sucede después, en los siete 
segundos siguientes, en cada uno de los electrodos. 
c. Determinar el volumen total de gases, medidos en condiciones normales, que se desprenden en los 
electrodos durante toda la electrolisis. 
d. Hallar el pH final de la disolución, suponiendo que la disociación del ácido sulfúrico sea total. 
 
Solución. 
a) El cobre se deposita en el cátodo mediante un proceso de reducción. 
( ) Eq
gr75'31
2
5'63CuP Cue2Cu Eq
2 ==→+ −+ 
 El tiempo necesario para llevar a cabo todo el depósito del cobre se obtiene mediante las leyes de 
Faraday. 
F
Qgr-Eqºn = Donde: 




⋅=
=
tIQ
P
mgr-Eqºn
Eq 
F
tI
P
m
Eq
⋅
= 
 
s 53min 16s 1013
s
CA 2'1Eq
gr31'75
Eq
C96500gr 400'0
IP
Fmt
Eq
==





⋅
⋅
=
⋅
⋅
= 
 
b) Durante el depósito del cobre en el cátodo, en el ánodo se produce la oxidación de los hidroxilos, 
procedentes de la autoionización del agua, a oxigeno molecular, debido a que el anión sulfato no puede 
oxidarse por estar el azufre en su máximo estado de oxidación. 
Ánodo: ( ) Eq
gr8
4
32
v
MOP OH2Oe4OH4 2Eq22 ===+→−
−− 
 
 Una vez concluido el depósito del cobre, en el cátodo empieza a desprenderse hidrógeno molecular 
debido a la reducción de los protones presentes en la disolución. 
( ) Eq
gr1
2
2
v
MHP He2H2 2Eq2 ===→+
−+ 
 En el ánodo se sigue desprendiendo oxigeno. 
 
c) En el cátodo se desprende hidrógeno durante 7 min = 420 s. El número de moles de hidrógeno se 
puede calcular mediante las leyes de Faraday. 
( )
( )
( ) ( )( )
( )
( )
( )
F
tI
Hv
HM
Hm
:
Hv
HM
HP
F
tI
HP
Hm
2
2
2
2
2
2Eq
2Eq
2
⋅
=






=
⋅
=
 
Ordenando y teniendo en cuenta que n
M
m
= (nº de moles) 
( )
( ) ( ) ( ) ( ) F
tIHvHn 
F
tIHv
HM
Hm
222
2
2 ⋅=⋅
⋅
= 
 
 
 - 17 - 
( ) ( ) 2
3
2
2 H de moles 102'6 
mol
Eq2Eq
C96500
s 420
s
CA 1'2
HvF
tIHn −×=
⋅
⋅





=
⋅
⋅
= 
 
En el ánodo se desprende oxígeno durante todo el tiempo: 
s 1433420 1013tT =+= 
 El número de moles de oxígeno desprendido se obtiene igual que los de hidrógeno. 
( ) ( ) 2
3
2
T
2 O de moles 104'5 
mol
Eq4Eq
C96500
s 1433
s
CA 1'2
OvF
tIOn −×=
⋅
⋅





=
⋅
⋅
= 
 
 El número de moles gaseosos desprendidos en todo el proceso será la suma de los dos. 
( ) gaseosos moles 101'7105'4106'2nngn 333OHT 22
−−− ×=×+×=+= 
 
En condiciones normales, el volumen que ocupan es: 
( ).n.cL 159,0molL22,4 moles101'7V
3 =⋅×= − 
 
d) Al final de la electrolisis tendremos una disolución acuosade ácido sulfúrico, que , de acuerdo con 
el enunciado del problema, vamos a suponer totalmente disociado: 
+− +→+ OH2SOOH2SOH 3
2
4242 
La concentración de catión hidronio en dicha disolución será el doble que la de ión sulfato, y esta 
será igual que la de ión Cu2+ inicial por estequiometria: 
( )
( )
( ) 



=
×
=⋅=== −
+
+
+−+
L
molM 122'0
10100
5'65
400'0
2
LV
CuM
Cum
2Cu2SO2OH 3
sd
2
o
2
43 
Conocida la concentración de protones se calcula el pH de la disolución: 
[ ] 0,90,12 logOHlogpH 3 =−=−= +

Continuar navegando