Logo Studenta

QUIMICA ENLACES COVALENTES POLARIDAD

¡Estudia con miles de materiales!

Vista previa del material en texto

ENLACES COVALENTES
Para la clase tan amplia de sustancias que no se comportan como sustancias iónicas necesitamos un modelo diferente para el enlace entre los átomos. G. N. Lewis razonó que un átomo podría adquirir una configuración electrónica de gas noble compartiendo electrones con otros átomos. 
Un enlace químico que se forma compartiendo un par de electrones se llama enlace covalente. 
La molécula de hidrógeno, H2, ofrece el ejemplo más sencillo posible de enlace covalente. Cuando dos átomos de hidrógeno se acercan mucho, se hacen sentir atracciones electrostáticas entre ellos. Los dos núcleos con carga positiva y los dos electrones con carga negativa se repelen mutuamente, mientras que los núcleos y los electrones se atraen.
Para que la molécula de H2 pueda existir como entidad estable, las fuerzas de atracción deberán exceder a las de repulsión. Pero, ¿por qué? Si aplicamos métodos de la mecánica cuántica análogos a los que se usan con átomos, podremos calcular la distribución de la densidad electrónica en las moléculas. Un cálculo semejante para el H2 muestra que las atracciones entre los núcleos y los electrones hacen que la densidad electrónica se concentre entre los núcleos.
En consecuencia, las interacciones electrostáticas totales son atractivas. Así pues, los átomos del H2 se mantienen unidos principalmente porque los dos núcleos son atraídos electrostáticamente hacia la concentración de carga negativa que está entre ellos. En esencia, el par compartido de electrones en cualquier enlace covalente actúa como una especie de “pegamento” que une a los átomos como en la molécula de H2.
Estructuras de Lewis
Podemos representar la formación de enlaces covalentes utilizando símbolos de Lewis para mostrar los átomos constituyentes. La formación de la molécula de H2 a partir de dos átomos de H se puede representar así:
Así, cada átomo de hidrógeno adquiere un segundo electrón y alcanza la configuración electrónica estable, con dos electrones, del gas noble helio.
La formación de un enlace entre dos átomos de cloro para dar una molécula de Cl2 se puede representar de forma similar:
Cada átomo de cloro, al compartir el par de electrones de enlace, adquiere ocho electrones (un octeto) en su capa de valencia, y alcanza la configuración electrónica de gas noble del argón. Las estructuras que se muestran aquí para H2 y Cl2 se denominan estructuras de Lewis (o estructuras de electrón-punto de Lewis). 
Al escribir estructuras de Lewis, normalmente indicamos con una línea cada par de electrones compartido entre dos átomos, y los pares de electrones no compartidos se dibujan como puntos. Siguiendo esta convención, las estructuras de Lewis para H2 y Cl2 se dibujan así:
Estos enlaces son covalentes porque comparten electrones, simples porque la cantidad de electrones compartidos es un par y no polares porque ambos átomos son iguales y por lo tanto tienen la misma electronegatividad y podemos calcular la diferencia de electronegatividad y nos dará cero. 
	
Para los no metales, el número de electrones de valencia de un átomo neutro es igual al número de grupo. Por tanto, podríamos predecir que los elementos del grupo 7A, como F, forman un enlace covalente para alcanzar un octeto; los elementos del grupo 6A, como el O, formarían dos enlaces covalentes; los elementos 5A, como el N, formarían tres enlaces covalentes; y los elementos 4A, como el C, formarían cuatro enlaces covalentes. Estas predicciones se cumplen en muchos compuestos. Por ejemplo, consideremos los compuestos de hidrógeno sencillos con los no metales de la segunda fila de la tabla periódica:
Así, el modelo de Lewis logra explicar la composición de muchos compuestos formados por no metales, en los que predominan los enlaces covalentes.
ENLACES MULTIPLES
Al compartirse un par de electrones, se forma un solo enlace covalente, al que generalmente llamamos enlace sencillo o simple. En muchas moléculas, los átomos completan un octeto compartiendo más de un par de electrones entre ellos. Cuando se comparten dos pares de electrones, dibujamos dos líneas, que representan un doble enlace. En el dióxido de carbono, por ejemplo, se forman enlaces entre carbono, que tiene cuatro electrones de capa de valencia, y oxígeno, que tiene seis:
Como muestra el diagrama, cada oxígeno adquiere un octeto de electrones compartiendo dos pares de electrones con el carbono. El carbono, por su parte, adquiere un octeto de electrones compartiendo dos pares con dos átomos de oxígeno. En un triple enlace, se comparten tres pares de electrones, como en la molécula del N2
Puesto que cada átomo de nitrógeno posee cinco electrones en su capa de valencia, es necesario compartir tres pares de electrones para alcanzar la configuración de octeto. Las propiedades del N2 son del todo congruentes con esta estructura de Lewis. El nitrógeno es un gas diatómico con una reactividad excepcionalmente baja que se debe a la gran estabilidad del enlace nitrógeno-nitrógeno.
POLARIDAD DE LOS ENLACES Y ELECTRONEGATIVIDAD
El concepto de polaridad del enlace es útil para describir la forma en que se comparten electrones entre los átomos. En un enlace covalente no polar, los electrones se comparten equitativamente entre dos átomos. 
En un enlace covalente polar, uno de los átomos ejerce una atracción mayor sobre los electrones de enlace que el otro. Si la diferencia en la capacidad relativa para atraer electrones es lo bastante grande, se forma un enlace iónico.

Continuar navegando