Logo Studenta
¡Este material tiene más páginas!

Vista previa del material en texto

CONTENIDOS 
/ PROCESO DE CRECIMIENTO, DESARROLLO Y DIFERENCIACIÓN EN LAS PLANTAS / INTERRELACIONES Y PLANTA Y MEDIO AMBIENTE COMO DETERMINANTES DEL CRECIMIENTO Y DESARROLLO /ACVTIVADORES QUÍMICOS E INHIBIDORES / FITOHORMONAS / AUXINAS / CITOCININAS / GIBERELINAS / ETILENO / ACIDO ABSCÍSICO (ABA) / BRASINOESTEROIDES (BR) / ACIDO JASMÓNICO (AJ) / POLIAMINAS / 
PÁGINA PRINCIPAL
PROCESO DE CRECIMIENTO, DESARROLLO Y DIFERENCIACIÓN EN LAS PLANTAS
Uno de los aspectos más relevantes de las plantas terrestres es su vida sedentaria, lo que ha determinado sus hábitos de vida, que le permiten captar la energía lumínica del sol mediante el proceso fotosintético y obtener los nutrientes del medio a través de las raíces, esto estimula el crecimiento y desarrollo, ya que las plantas son autótrofas, a diferencia de los animales que se mueven en procura de su alimentación, por su condición de heterótrofos. Las plantas presentan una estructura rígida, determinada por la presencia de una pared celular celulósica, en la que sus células se encuentran muy unidas a sus vecinas mediante plasmodesmos, lo que es característico de una matriz leñosa. El crecimiento de las plantas está determinado por la actividad de células meristemáticas que se encuentran en los ápices de tallos y raíces, son los meristemas apicales y en los meristemas laterales formados por: el cambium vascular y el cambium del corcho o felógeno. Por otro lado, el desarrollo temprano de los animales, se caracteriza por migración celular hacia sitios nuevos hasta formar tejidos específicos. El sedentarismo de las plantas, provoca su adaptación ambiental, que puede ser de tipo morfofisiológica. A diferencia de los animales cuyo patrón corporal se establece durante la embriogenésis, las plantas construyen sus formas durante toda su vida, a través de programas de desarrollo vegetativo. Es por esto que los tejidos meristemáticos proveen una forma de adaptación dependiendo de las condiciones ambientales, al mantener un reservorio de células no diferenciadas, con características embrionarias, lo que le da una gran plasticidad al desarrollo de las plantas. Las células vegetales muestran totipotencia, que es la capacidad que tiene una sola célula de regenerar un organismo completo. 
El crecimiento ocurre cuando se forman nuevas células y tejidos mediante división celular. La división celular ocurre en células meristemáticas y consiste en dos fases: la mitosis en la que se replican los cromosomas y se disponen en dos núcleos hijos, que son cualitativa y cuantitativamente idénticos y la citocinesis, en la que se divide la pared celular, el citoplasma y los organelos. 
Las células meristemáticas se caracterizan por tener paredes celulares delgadas, tienen vacuolas pequeñas, núcleos grandes y se dividen constantemente. Las células hijas, pueden dividirse por un tiempo, pero después pierden esa capacidad, se alargan y desarrollan vacuolas grandes y por último ocurre la diferenciación o maduración de estas células, que originan tejidos con funciones específicas, órganos y estructuras especializadas que requiere la planta durante su ciclo de vida.
Las hormonas vegetales, auxina y citokinina participan en el ciclo celular, la auxina estimula la replicación del ADN, mientras que la citocinina inicia los eventos de la mitosis. 
Fuente: http://www.biologia.edu.ar/botanica/tema15/images15/proColeus.jpg
El desarrollo de la planta se caracteriza por la división, el alargamiento y la diferenciación celular, todos estos cambios están regulados de una forma compleja, en la que participan cuatro factores:
· La planta capta y responde a las señales ambientales.
· El genoma de la planta codifica enzimas que catalizan las reacciones bioquímicas del desarrollo, que incluyen las que fabrican hormonas, receptores, participan en la síntesis de proteínas y en el metabolismo energético.
· La planta utiliza receptores que detectan las señales ambientales, como los fotorreceptores que captan la luz.
· Los mensajeros químicos u hormonas, median los efectos de las señales ambientales captadas por los receptores.
Las hormonas vegetales son compuestos reguladores que actúan en muy bajas concentraciones, son producidas en una parte de un órgano multicelular y transportadas a otro sitio donde ejercen su efecto específico. 
Cuando la semilla sale de su estado latente, germina y se transforma en una plántula en crecimiento. Para que el embrión comience a desarrollarse, la latencia de la semilla debe ser interrumpida por la acción de factores físicos, como la exposición a la luz, la abrasión mecánica de la testa, el fuego o el lavado de los inhibidores del crecimiento por el agua. A medida que la semilla germina, primero absorbe agua, lo que desencadena una serie de reacciones bioquímicas que movilizan las reservas de grasas, polisacáridos y proteínas. Los fotorreceptores y las hormonas regulan el desarrollo de la plántula. 
Durante la germinación de la cebada y otras semillas de cereales, el embrión segrega giberelinas, una hormona que promueve la liberación de enzimas que digieren proteínas y el almidón almacenado en el endospermo. Las giberelinas son utilizadas en la industria de la cerveza para aumentar la germinación de la cebada y la degradación del endosperma, produciendo azúcar que es fermentada a alcohol etílico.
Después que la planta alcanza una edad o tamaño apropiado, se produce el fenómeno de floración y la formación de frutos. La floración en algunas plantas es controlada por la longitud de la noche. Es probable que una hormona viaje desde un órgano receptor como una hoja hacia la yema donde se formará una flor. Cuando la flor se forma, las hormonas desempeñan otros papeles, como el crecimiento del tubo polínico a través del estilo de un pistilo, para producir la fertilización. Luego se desarrolla un fruto que madura bajo control hormonal.Las auxinas, giberelinas y el etileno regulan la formación de un fruto.
Por último todas las plantas envejecen y mueren. La muerte, sigue a los cambios del envejecimiento controlados por hormonas como el etileno. Las hojas antes de comenzar el período de sequía, por interacción de hormonas como la auxina y el etileno envejecen y caen. El envejecimiento y muerte de plantas como el agave y algunas leguminosas anuales, se debe a un incremento del ácido abscisico durante la floración. 
Ir al principio 
INTERRELACIONES PLANTA Y MEDIO AMBIENTE COMO DETERMINANTES DEL CRECIMIENTO Y DESARROLLO
Existe una amplia variedad de formas vegetales, que se pueden clasificar en varias categorías con diferentes características ecológicas. Algunas plantas crecen sin ningún soporte mecánico y estas constituyen los árboles y arbustos leñosos o pueden ser herbáceas sin tejido leñoso. 
Los árboles dominan muchos ecosistemas en los que el clima es húmedo y caliente durante parte del año. Sin embargo dejan de ser dominantes cuando el suelo es demasiado escaso para el crecimiento de las raíces, y donde es demasiado seco como en desiertos, o donde el suelo se congela permanentemente como en la tundra, o en sitios anegados durante parte del año, o en sitios dominados por sales o metales pesados o en ambientes alterados por el hombre. Los árboles pueden crecer por muchos años produciendo semillas o solamente por algunos años. La mayoría de los bosques son dominados por angiospermas dicotiledóneas a excepción de los grandes bosques de confieras del hemisferio norte. En muchos bosques los árboles forman estratos determinados por varios factores ambientales entre los que podemos mencionar la luz y el genoma de las especies que lo componen. Los helechos arbóreos, cycadas y monocotiledóneas arbóreas son comunes, pero no son dominantes o en algunas excepciones en pantanos o en situaciones en que son colonizadores. En muchos bosques los árboles forman estratos, compuesto de árboles grandes que emergen del dosel en algunos bosques tropicales y estratos secundarios formados por árboles y arbustos, frecuentemente formando más de una capa. Generalmente las especies tolerantes de la sombrase encuentran en los estratos inferiores y las especies heliófilas que toleran la luz, en los estratos superiores, sin embargo esta separación no es estricta, encontrándose árboles grandes en los estratos inferiores también. En los bordes o límites del bosque donde existen brechas se observa que crecen especies pioneras, de rápido crecimiento, como el balso y el yagrumo. 
Muchas plantas herbáceas son anuales y mueren después de una estación de crecimiento, dejando solamente las raíces y algunas veces las hojas hasta la nueva estación de crecimiento. Las herbáceas junto a los arbustos pequeños forman la capa basal en muchas áreas, como en sabanas, mesetas, desiertos y llanos. Las gramíneas son casi todas herbáceas a excepción del bambú. Están bien adaptadas para resistir la presión del pastoreo, ya que en lugar de tener meristemas ápicales, están situados en los nudos, lo que les permite formar tallos por encima de los nudos. Las gramíneas que poseen meristemas subterráneos, pueden resistir la acción inclemente del fuego. 
En los bosques tropicales predominan las plantas trepadoras y epifitas que requieren la presencia de un hospedero, que les proporcione soporte para su crecimiento. Las epifitas dependen de abundantes lluvias, ya que estas obtienen el agua de las precipitaciones y de la escorrentía a lo largo de los tallos y ramas. 
En los bosques tropicales algunas epifitas son arbustivas, desarrollan un tallo leñoso, que puede formar raíces que alcanzan el suelo hasta hacerse independientes. Los Ficus (matapalos) y los matapalos del género Clusia son los ejemplos más conspicuos de estas epifitas estranguladoras, que se independizan del hospedero, matándolo. 
Las Lorantáceas son hemiparásitas, ya que a pesar de realizar la fotosíntesis, penetran el hospedero a través de haustorios succionándole agua y nutrientes, ejemplo de esta tenemos la tiña y el guate pajarito. 
Existen varios factores externos que afectan el crecimiento, como son: La Temperatura, la luz, el agua y ciertas sustancias químicas que lo estimulan o inhiben.
· TEMPERATURA 
El crecimiento de las plantas superiores ocurre en un rango de 0o a 350 C, en ese rango un aumento de 100C (Q10 está entre 2-3) aumenta la tasa de crecimiento 2 a 3 veces. Estas se conocen como las temperaturas cardinales o puntos de crecimiento: la mínima, o la menor temperatura a la que ocurre el crecimiento; el óptimo, la temperatura de máxima velocidad de crecimiento; y el máximo, o la temperatura más alta en la que se detecta el crecimiento. Estas no son temperaturas bien definidas y varían de especie a especie. 
Las temperaturas cardinales pueden variar con el estado de desarrollo de la planta. La velocidad de crecimiento de un órgano no depende solamente de su propia temperatura sino también del resto de la temperatura de la planta. Por ejemplo cuando se mantuvo constante la temperatura de una hoja de maíz a 250C y con una humedad relativa del 100 %, la tasa de crecimiento se incremento entre 50 y 150C, que están por debajo de la temperatura a la que se mantuvo la hoja. El crecimiento de plantas de maíz jóvenes se inhibe cuando la temperatura superficial del suelo excede los 350C. Así mismo debemos tener presente que el crecimiento depende de otros factores como son la fotosíntesis y la respiración y estos fenómenos poseen también temperaturas cardinales. 
La tasa de fotosíntesis de muchas plantas con el ciclo de carbono C3 alcanza un máximo entre 200 y 300C. En las plantas que fijan el carbono mediante el ciclo C4 la fotosíntesis aumenta rápidamente a una temperatura foliar entre 300 y 400C y luego a temperaturas más alta disminuye rápidamente. 
Las temperaturas cardinales para el crecimiento son de una gran importancia práctica, ya que el máximo crecimiento y productividad puede requerir un clima con un lapso de tiempo máximo cerca de la temperatura óptima. Debido a que las reacciones químicas que ocurren en las plantas están controladas por enzimas, una temperatura máxima debe ocurrir tan pronto como las enzimas se desnaturalizan y se inactivan. Esto sucede generalmente a una temperatura ligeramente por encima del máximo para un proceso biológico. Las temperaturas cardinales para el crecimiento deben estar controladas por la desnaturalización de las enzimas de las plantas. 
El crecimiento es un proceso que depende del tiempo, no solamente afecta la temperatura puntual; sino el número de horas o días en que un organismo se somete a una temperatura determinada. 
El crecimiento y desarrollo de las plantas, casi siempre responde a un termo período, que consiste en temperaturas alternas entre el día y la noche.
El efecto de la temperatura sobre la germinación tiene una gran importancia en la ecología de poblaciones. El rango de temperaturas para la germinación de esporas y semillas debe corresponder a condiciones externas apropiadas, que permiten un rápido desarrollo de las plantas jóvenes. El rango de temperatura para el comienzo de la germinación es amplio en especies que están extensamente distribuidas y en aquellas adaptadas a altas fluctuaciones de temperatura en su hábitat natural. 
· LUZ 
Aunque el crecimiento de las plantas superiores depende de la fotosíntesis, sin embargo la luz no es necesaria para el proceso de crecimiento per se, en la medida en que haya un buen suministro de sustancias orgánicas. Algunas plantas tuberosas y bulbos pueden completar su ciclo de vida en la oscuridad, a expensas de las abundantes reservas de alimentos, sin embargo el tipo de crecimiento es diferente cuando la luz esta ausente. En la oscuridad las plantas crecen largas, débiles y cloróticas, lo que se conoce como etiolación. En el caso de muchas dicotiledóneas, el tallo se encuentra excesivamente alargado y las hojas se desarrollan con deficiencia. La diferenciación es muy poca y los tejidos son principalmente parenquimatosos. Las hojas tienen ausencia de clorofila y el color es amarillo pálido; aunque se presentan excepciones entre las plántulas de las gimnospermas y algunos helechos, que pueden formar clorofila en la oscuridad. Las monocotiledóneas pueden mostrar el alargamiento excesivo del primer entrenudo y un crecimiento normal o un desarrollo excesivo de las hojas en la oscuridad. Una exposición diaria corta a la luz previene la etiolación. La luz retarda el crecimiento excesivo de las plantas etioladas. Las plantas parameras crecen achaparradas o arrosetadas debido a la luz excesiva en las grandes altitudes, la cual es muy rica en radiaciones violeta y ultravioleta, que parecen tener un efecto de enanismo marcado.
El primer efecto de la luz es iniciar los patrones de expresión genética, y la plántula comienza a formar cloroplastos fotosintéticamente activos, alterando sus formas de crecimiento de alargamiento rápido en la producción de hojas y un tallo capaz de soportarlas. Esto se conoce como fotomorfogénesis, que son los cambios de formas en respuesta al factor luminoso. Existen otros ejemplos como son la germinación de algunas semillas que germinan solamente después de ser sometidas a luz roja, ej., Alnus acuminata; así como la morfología foliar. Dependiendo del hábitat las hojas desarrollan una serie de características morfológicas especiales; si están expuestas al sol las hojas son más gruesas que las que crecen a la sombra, y tienen un parénquima en empalizada con células más largas que si las hojas crecen en la sombra. El movimiento de los cloroplastos es controlado por la luz. Bajo condiciones de baja luminosidad los cloroplastos se orientan de una forma perpendicular a la luz incidente y se agrupan en las células paralelamente a la superficie foliar. A altas intensidades luminosas los cloroplastos se mueven hacia la superficie celular que es paralela a la luz incidente, evitando la absorción excesiva de luz. El movimiento de los cloroplastos es una respuesta típica a la luz azul, así como el fototropismo. El crecimiento en respuesta a la luz roja implica la participación del fitocromo. 
Fotoperiodismo es una respuesta estacional a la longitud deldía y la noche del fenómeno de floración. Algunas plantas florean más rápido cuando la longitud del día fue de 12 horas o menos , son las plantas de días cortos y otras florearon cuando la longitud del día fue de 12 horas o más, plantas de días largos; mientras que otras plantas florearon independientemente de la longitud del día, son plantas neutras. Si la longitud del día no es apropiada para la floración, la planta permanece en estado vegetativo indefinidamente, o simplemente va a tomar un período más largo para florear. Tenemos un caso de los crisantemos ( pompon) que se siembran en la zona andina, a los que se les suministra un período de luz artificial para que continúen con el crecimiento vegetativo por cierto tiempo, luego se retira la iluminación artificial para que ocurra el fenómeno de floración ( es una planta de días cortos). El resultado son plantas largas con flores en un extremo del tallo, que pueden ser colocadas fácilmente en floreros. Este es un ejemplo de una aplicación práctica del fotoperíodo en la floricultura. 
Fitocromos son proteínas fotorreceptoras azuladas. Son azules porque absorben la luz roja e infrarroja y transmiten el resto de longitudes de onda. En el citosol hay dos formas interconvertibles de fitocromo, la forma que absorbe luz roja de 660 nm se llama PR, cuando absorbe la luz roja, se transforma en PFR, forma esta que absorbe luz infrarroja de 730 nm y cuando lo hace se transforma en PR . Algunas semillas requieren una exposición a la luz roja para germinar, entre estas están las de lechuga, aliso (Alnus acuminata).
Los fitocromos participan como mediadores en una serie de respuestas de las plantas a la luz, como son:
· Etiolación, en la que las plántulas o sus órganos se alargan rápidamente sin la producción de cloroplastos hasta tanto no reciben luz roja. Al ser expuestas a la luz roja se forman cloroplastos funcionales.
· Ritmos circadianos. Una serie de procesos metabólicos y de posicionamiento de las hojas responden a un ciclo periódico de 24 horas. La respuesta al fitocromo asegura la sincronía del ritmo con la longitud del día. Cambios en el turgor celular, como el observado en el movimiento circadiano de hojas y pétalos de algunas plantas.
· Germinación. Muchas semillas son estimuladas a germinar por la luz, en una respuesta mediada por el fitocromo.
· El fitocromo le permite a las plantas detectar la presencia y distancia de hojas de plantas vecinas. 
· Muchas plantas que crecen en hábitat abierto y claro del bosque, poseen semillas que germinan solamente cuando expuestas a la luz, con una alta proporción de radiación roja (la luz promueve la geminación). En cielo abierto la luz natural tiene una proporción de Rojo/Rojo lejano de 1,2 a 1,3; mientras que debajo del dosel del bosque la proporción de rojo lejano puede ser 2 a 10 veces mayor que la radiación roja. Las plantas que requieren más radiación roja no germinan y permanecen latentes, hasta tanto no se remueven las ramas y hojas, mediante talado o por acción de un fenómeno natural (tormenta, rayos, etc.). Así mismo las semillas que han sido expuestas al rojo lejano antes de ser enterradas en el banco, requieren de luz roja para germinar.
· Los fitocromos también regulan cambios en la expresión del gen. Los fitocromos regulan un número de genes en el cambio de una planta etiolada a la normalidad, lo que resulta en la transformación de plastidios no fotosintéticos (etioplastos), a cloroplastos completamente desarrollados y con función fotosintética. 
AGUA 
Es indispensable para el crecimiento de las plantas, ya que en su presencia ocurren reacciones metabólicas, que participan en los procesos de crecimiento y desarrollo. El crecimiento depende de la existencia de una presión de turgencia; es por esto que un déficit hídrico lo puede retardar e interrumpir por completo. Un exceso de agua puede resultar en condiciones anóxicas que provocan un crecimiento anormal. En una atmósfera saturada de humedad ocurre un desarrollo pobre de las hojas y se retarda la diferenciación de los tejidos. 
Las plantas hidrófilas, que viven en el agua tienen una presión osmótica baja y no poseen una presión de turgencia excesiva. Estas plantas desarrollan un parénquima aerífero con amplios espacios intercelulares, las hojas son delgadas y los estomas cuando presentes solamente se observan en la haz foliar. 
A altas temperaturas se afecta el crecimiento por una evapotranspiración excesiva, lo que provoca una disminución de la presión de turgencia. A bajas temperaturas el crecimiento se puede inhibir debido a una disminución de la absorción de agua. 
Ir al principio 
ACVTIVADORES QUÍMICOS E INHIBIDORES
Las sales nutritivas son requeridas por las plantas para su crecimiento normal; sin embargo cuando se encuentran en soluciones nutritivas desbalanceadas pueden inhibir el crecimiento. Muchos iones son tóxicos para el crecimiento de las plantas a altas concentraciones. Algunos iones como el cadmio (Cd) y el aluminio (Al), son tóxicos inclusive a bajas concentraciones. La concentración de iones tóxicos aumenta cuando se añaden toxinas al suelo mediante la contaminación atmosférica o en desechos industriales. Así mismo, si las condiciones de acidez del suelo cambia, se libera el aluminio a partir de complejos tóxicos insolubles. La toxicidad se manifiesta con una inhibición del crecimiento o en última instancia la planta deja de completar su ciclo de vida. La toxicidad puede causar:1) la inhibición de la absorción de agua, nutrientes o la fotosíntesis, 2) inhibición de la utilización de recursos metabólicos, como inhibición enzimática, daños a las membranas celulares., etc. En el cuadro siguiente se resume el efecto de algunos iones tóxicos.
	Ión tóxico
	Condiciones
	Efecto
	Aluminio
	Suelos ácidos debajo de
pH 4.
	Inhibe el crecimiento de la raíz, se enlaza a fosfatos, ADN, ARN, destruye membranas y el metabolismo del ATP.
	Boro 
( a altas concentraciones)
	Suelos contaminados con cenizas residuos de combustión.
	Clorosis y necrosis de tejidos.
	Cobre 
( a altas concentraciones)
	Suelos contaminados con residuos de minería.
	Daño a membranas celulares de raíces, inhibe el crecimiento. 
	Magnesio
( a altas concentraciones)
	Suelos con una alta relación Mg/Ca.
	Causa deficiencia de Ca.
	Manganeso 
( a altas concentraciones)
	Suelos ácidos
	Causa deficiencia de Ca y Mg, inhibe el crecimiento del vástago.
	Sodio
	Suelos salinos, suelos irrigados
	Compite con la absorción de potasio, efecto osmótico; los estomas permanecen abiertos.
	Cloro
	Suelos salinos, suelos irrigados.
	Efecto osmótico, compite por la absorción de otros aniones, produciendo deficiencia.
Algunas plantas pueden sobreviven bien adaptándose a la presencia de iones tóxicos en el suelo. Estas plantas crecen muy lento, pero como carecen de especies competidoras se benefician de esta situación. Hay especies como la Eichhornia crassipes (Bora o jacinto de agua) que acumula grande cantidades de elementos metálicos tóxicos, como son: Cd, Co, Pb, Hg, Ni y Au, a partir de aguas contaminadas, y produce una biomasa de 600 Kg. /Ha/ día, esta planta se puede usar para purificar aguas contaminadas. 
La toxicidad por contaminación atmosférica se presenta cuando las plantas se exponen a gases tóxicos, producto de las emanaciones industriales y volcánicas.Entre estos contaminantes podemos mencionar el ozono, dióxido de azufre, oxido de nitrógeno y monóxido de carbono. Su efecto puede ser directo, inhibiendo la apertura estomática, daño a la superficie de las plantas, inhibición de enzimas o indirecto, alterando el pH del suelo, impidiendo la absorción mineral o liberando metales tóxicos a la solución del suelo, como el Al y Mn. 
Ir al principio 
FITOHORMONAS
Las hormonas vegetales o sustancias de crecimiento actúan en bajas concentraciones, específicamente para regular el crecimiento y el desarrollo de las plantas. Las hormonas vegetales desempeñan múltiples papeles reguladores que afectan aspectos diferentes del desarrollo. En las hormonas vegetales no existe una claraseparación entre los sitios de síntesis y de acción. 
Ir al principio 
AUXINASs
La principal auxina vegetal es el ácido-3-indol acético. Existen otros compuestos con actividad auxínica, entre los cuales podemos mencionar el ácido fenoxi- acético y el ácido 3-indol butírico. 
Las auxinas afectan el crecimiento y la forma de las plantas. Si se corta la yema apical en el extremo de una planta de arveja, los brotes laterales inactivos se hacen activos, y desarrollan ramas. Así mismo, cuando se poda un árbol, eliminando las yemas terminales, se aumenta la ramificación. Esto se conoce como dominancia apical. Si se reemplaza la yema apical con auxina, se inhibe el crecimiento de las yemas axilares, sugiriendo esto que una alta concentración de auxina en el ápice inhibe las yemas axilares. El transporte de auxina es polar. Si se corta la lámina foliar, pero se deja el pecíolo unido a la planta, el pecíolo se cae antes que si la hoja estuviera intacta, ya que en la lámina foliar se sintetiza auxina. Si una planta se mantiene en el interior de una habitación, pero cercana a una ventana por donde penetra la luz, la planta crece hacia la luz, esta respuesta se conoce como fototropismo. Los tallos presentan fototropismo positivo; mientras que las raíces crecen alejandose de la luz, mostrando fototropismo negativo. Este fenómeno se puede explicar asumiendo que la auxina se mueve hacia el lado sombreado, donde estimula un crecimiento celular mucho más rápido que en el lado expuesto a la luz, lo que origina la curvatura fototrópica. Cuando un tallo se encuentra acostado horizontalmente sobre el suelo, la auxina se mueve hacia el lado inferior del tallo, lo que se traduce en un crecimiento más rápido de las células del lado inferior, que produce su inclinación hacia arriba, esta inclinación se denomina gravitropismo negativo, mientras que las raíces se inclinan hacia abajo, mostrando gravitropismo positivo. 
Las auxinas afectan el crecimiento de varias formas: 
· Inician el crecimiento de las raíces en estacas.
· Estimulan la separación de las hojas viejas de los tallos (abscisión).
· Mantienen la dominancia apical.
· Promueven el alargamiento del tallo e inhiben al alargamiento de la raíz.
· La auxina promueve la expansión celular aumentando la plasticidad de las paredes celulares.
· Crecimiento de los tallos en relación a la luz, lo que asegura que las hojas reciban una cantidad de luz óptima para la fotosíntesis (Fototropismo).
· Crecimiento de las raíces hacia el suelo (gravitropismo positivo) y de los tallos hacia arriba (gravitropismo negativo).
· Tigmotropismo o crecimiento en respuesta al contacto con un cuerpo duro, lo que produce el movimiento de las raíces alrededor de una roca o de los tallos de las plantas trepadoras alrededor de otras estructuras que le sirven de soporte. 
La auxina controla el desarrollo de algunos frutos. Normalmente el desarrollo de un fruto requiere la fertilización de un óvulo; sin embargo el tratamiento de un ovario no fertilizado con auxina o giberelina produce la formación de un fruto sin la fertilización de un óvulo, por lo tanto carecen de semillas, este fenómeno se conoce como partenocarpia por ejemplo, fresas, tomates, pepinos, calabaza, naranjas. Los frutos partenocarpicos se forman espontáneamente en algunas plantas, incluidas las uvas sin semillas, las bananas o cambures cultivados. 
La auxina promueve la diferenciación celular. Cuando un callo (masa de tejido no diferenciado) se pone a crecer en un medio nutritivo, con una concentración apropiada de auxina se forman raíces. Este efecto se observa también en estacas donde la auxina estimula la formación de raíces laterales. El patrón de formación de los órganos depende de la relación auxina: citocinina, en el medio de cultivo. Una proporción elevada de auxina favorece la formación de raíces; mientras que una concentración elevada de citocinina favorece la formación de brotes.
Las auxinas sintéticas tienen amplia aplicación en agricultura y horticultura. El ácido 2,4-dicloro-fenoxi acético (2,4-D) y el 2, 4,5 tricloro-fenoxi-acético (2, 4,5-T) se utilizan como herbicidas a altas concentraciones, especialmente para controlar eudicotiledóneas, ya que son inofensivos para las monocotiledóneas. Sin embargo por degradarse lentamente, son contaminantes del medio ambiente causando daños a los ecosistemas. El ácido naftaleno acético (NAA) se utiliza para promover el enrraizamiento de estacas.
Las auxinas naturales se sintetizan a partir del amino ácido triptofano, especialmente en hojas jóvenes, meristemas del vástago y frutos en desarrollo, y dondequiera que las células se estén dividiendo rápidamente. 
Las auxinas promueven la diferenciación de nuevos tejidos vasculares en la parte del tallo que queda debajo de la yema terminal y de hojas jóvenes en crecimiento, la remoción de las hojas jóvenes impide la diferenciación vascular. En plantas leñosas perennes, la auxina producida por las yemas en crecimiento durante la primavera, estimula la actividad del cambium vascular en dirección basipeta. El nuevo anillo de crecimiento secundario comienza en las ramitas más pequeñas y progresa hacia abajo hasta el ápice de la raíz. 
Ir al principio 
CITOCININAS
Las citocininas estimulan la formación de brotes, promueven la división celular en tejidos cultivados. Así mismo ayudan a la germinación, inhiben el alargamiento del tallo, estimulan el crecimiento de los brotes laterales y retardan el envejecimiento foliar. 
Las citocininas son derivados de la adenina, una base nitrogenada que forma parte de los ácidos nucleicos. Esta hormona se denominó citocinina debido a que promueve la división celular o citocinesis.
La citocinina es sintética y no se encuentra naturalmente, sino como producto de degradación del ADN . En las plantas se encuentra el producto natural citocinina , que fue aislado de la leche de coco y que promueve la división celular. A partir del endosperma inmaduro de maíz (Zea mays) se aisló una sustancia que tiene las mismas propiedades biologicas de la cinetina y se llamo zeatina. 
Las citocininas se forman principalmente en los meristemas apicales de las raíces y se mueven hacia otras partes de la planta. 
Las agallas que forma la bacteria Agrobacterium tumefaciens sintetizan zeatina, que promueve el crecimiento de los tumores que se observan en plantas infectadas con esa bacteria. 
Ir al principio 
GIBERELINAS
El estudio de las giberelinas comenzó indirectamente cuando un biólogo japonés Kurosawa observó que algunas plantas de arroz enfermas de "bakanae o planta loca", tenian un crecimiento en altura mucho mayor que las plantas sanas, las que mueren antes de producir semillas. Esta enfermedad es causada por un hongo ascomiceto Giberella fujikuroi el cual produce giberelinas. 
Se han aislado más de 100 giberelinas de las plantas, pero muchas carecen de actividad biológica. La más estudiada y la que probablemente es la de mayor actividad biológica es la GA3. La giberelina promueve el alargamiento del tallo, regulan la transición de la fase juvenil a la adultez, estimulando la formación de órganos florales. 
Las giberelinas pueden sustituir el requerimiento de días largos para la floración en muchas plantas, especialmente en especies arrosetadas. 
Las giberelinas regulan el crecimiento de los frutos. Las uvas sin semillas crecen más pequeñas que las uvas con semillas. La eliminación de las semillas de uvas muy jóvenes impidió el crecimiento normal de los frutos, lo que permitió concluir que las semillas producen un regulador del crecimiento del fruto. Luego se demostró que al asperjar uvas jóvenes sin semillas con una solución de giberelina, estas crecen tan grandes como las que tenían semillas. Actualmente se asperjan las uvas sin semillas, para que crezcan grandes y apetecibles. Estudios posteriores mostraron que las semillas en desarrollo producen giberelinas. 
Las giberelinas rompen la latencia de las semillas que requieren bajas temperaturas (termoperíodo) o luz para germinar (fotoperíodo), como es el caso delas semillas de aliso (Alnus acuminata) en que 5 ppm de giberelina sustituye el requerimiento de luz. En algunas semillas, las giberelinas estimulan la actividad de enzimas hidrolasas que promueven la movilización de las reservas del endospermo durante el proceso de germinación. 
fuente: http://iescarin.educa.aragon.es/depart/biogeo/varios/BiologiaCurtis/Seccion%206/6%20-%20Capitulo%2038.htm
La mayor actividad de las giberelinas se presenta en tejidos jóvenes de rápido crecimiento, como hojas, yemas, y semillas y frutos en desarrollo.Asi mismo estimula la germinación y el desarrollo del tubo polínico de algunas especies, como los lirios. 
El transporte se realiza a través del floema y no muestra polaridad. 
Las giberelinas interactúan con la auxina controlando el alargamiento del tallo. 
Ir al principio 
ETILENO
El etileno o eteno, es un gas que regula la maduración de frutos. Se ha descubierto que la cercanía de frutos maduros como naranjas o manzanas acelera el proceso de maduración de otros frutos, como tomates y cambures. Es importante cuando se transportan y mercadean frutos, regular la producción de etileno con el propósito de retardar el proceso de maduración. El agricultor que requiere madurar con premura cambures o plátanos para su mercadeo, utiliza carburo de calcio, el cual libera al humedecerse acetileno que luego se convierte en etileno, acelerando el proceso de maduración.
El etileno se forma en la mayoría de los órganos de las plantas superiores, aunque los tejidos en fase de envejecimiento y frutos en maduración producen más etileno que los tejidos jóvenes o maduros. El amino ácido metionina es el precursor de la síntesis del etileno. 
El etileno no solamente regula la maduración de frutos, sino los fenómenos asociados con el envejecimiento de flores y hojas, la abscisión de hojas y frutos; así como el desarrollo de los pelos radicales y crecimiento de plántulas. También regula la expresión de los genes de la maduración de frutos y de la patogenecidad. 
El etileno induce la formación de aerenquima en raíces bajo condiciones de inundación.
La preservación de frutos almacenados se alarga utilizando una atmósfera controlada, con baja concentración de CO2 (3 a 5 %) y bajas temperaturas, que inhiben la síntesis de etileno. 
El etileno es una de las hormonas más utilizadas en agricultura, pero como es un gas es difícil su aplicación; sin embargo se han sintetizado compuestos químicos que liberan etileno, como el Etefon (ácido 2-cloroetil fosfónico) conocido también como Etrel, el cual acelera la maduración de manzanas, tomates, cítricas, sincroniza la floración y fructificación en piñas y acelera la abscisión de flores y frutos. 
 
Ir al principio 
ACIDO ABSCÍSICO (ABA)
Es una hormona que se encuentra en todas las plantas superiores y musgos, regula el crecimiento y la apertura estomática especialmente cuando las plantas están sometidas a estrés ambiental. Otra función importante es la regulación de la maduración y latencia de semillas. 
ABA es transportado en la planta tanto por el xilema como por el floema, pero es más abundante en la savia floemática. Durante las condiciones de estrés provocada por la sequía las raíces sintetizan ABA, que se transporta por el xilema hacia las hojas que responden con el cierre estomático reduciendo la transpiración.
· ABA mantiene la latencia de las yemas durante el invierno. 
· Inhibe la germinación de las semillas. 
· Inhibe el alargamiento del tallo.
· Se le denomina la hormona del estrés de las plantas, ya que se acumula cuando las plantas son privadas de agua. 
· Regula el intercambio de gas y vapor de agua entre la planta y el medio ambiente al regular la apertura estomática. 
La síntesis de ABA se realiza tanto en cloroplastos como en otros plastidios. En las plantas superiores su biosíntesis se realiza siguiendo la ruta de los terpenos. 
Ir al principio 
BRASINOESTEROIDES (BR)
Son un grupo de hormonas esteroideas polihidroxiladas que juegan un papel importante en fenómenos de desarrollo de las plantas, como son: división y alargamiento celular de tallos y raíces, fotomorfogénesis, desarrollo reproductivo, envejecimiento foliar, respuestas al estrés y germinación. 
Los brasinoesteroides se encuentran presentes en las plantas a muy bajas concentraciones, sin embargo tienen un fuerte efecto como promotores del crecimiento, estimulando tanto la división como el alargamiento celular. Estos actúan conjuntamente con otras hormonas vegetales en la regulación del crecimiento y la diferenciación. Una planta mutante de Arabidopsis es enana, ya que no sintetiza brasinoesteroide; sin embargo al aplicarle brasinoesteroide artificialmente, la planta se alarga y empieza a crecer normalmente, indicando que este es esencial para el alargamiento celular en plantas normales. 
BR juega un papel importante en el desarrollo celular, promoviendo la diferenciación del xilema y suprimiendo la del floema. Promueve el desarrollo del tubo polínico desde el estigma y a través del estilo hasta el saco embrionario. Asi mismo, promueve la germinación de semillas de tabaco, independientemente del ácido giberélico. 
Ir al principio 
ACIDO JASMÓNICO (AJ)
La defensa de las plantas contra los herbívoros surge como una respuesta al daño ocasionado por insectos. Los insectos que se alimentan de las hojas de tomate dañan las células, conduciendo a la formación de una hormona polipeptídica la sistemina, lo que dispara la formación de otra hormona el ácido jasmónico como producto de la degradación de ácido linolenico, que es un ácido graso constituyente de la membrana celular. El ácido jasmónico entra en el núcleo de la célula, donde activa genes que programan la síntesis de un inhibidor de proteasas, lo que ocasiona que el insecto no pueda digerir las proteínas, retardando su crecimiento y provocando su muerte. 
El ácido jasmónico se sintetiza a partir del ácido linolenico mediante la acción de enzimas que se encuentran en dos organelos celulares, los cloroplastos y los peroxisomas. El AJ activa la defensa de las plantas contra insectos y muchos hongos patógenos. Así mismo, regula otros aspectos del crecimiento de las plantas como son: el desarrollo de las anteras y el polen. Promueve la senescencia y abscisión de hojas, inhibe la germinación de semillas y el alargamiento de las raíces.
Ir al principio 
POLIAMINAS
Son compuestos que tienen dos o más grupos aminos y son importantes para la vida vegetal. Ejemplos que tienen actividad biológica son:
· Putrescina: H2N-(CH2)4-NH2 
· Espermidina : H2N-(CH2)3-NH--(CH2)3- NH2
· Espermina: H2N-(CH2)3-NH--(CH2)3- NH-(CH2)3-NH2
Se originan a partir del amino acido arginina.
Las concentraciones de poliaminas aumentan durante la división celular.
Efectos fisiológicos:
· Favorecen la floración.
· Incrementan la tolerancia al estrés.
· Promueven la división celular.
· Estimulan la senescencia en hojas cortadas.
Ir al principio 
Desarrollo vegetal
	
	Este artículo o sección necesita referencias que aparezcan en una publicación acreditada, como revistas especializadas, monografías, prensa diaria o páginas de Internet fidedignas. Este aviso fue puesto el 26 de octubre de 2008.
Puedes añadirlas o avisar al autor principal del artículo en su página de discusión pegando: {{subst:Aviso referencias|Desarrollo vegetal}} ~~~~
El desarrollo vegetal es el proceso conjunto de crecimiento y diferenciación celular de las plantas que está regulado por la acción de diversos compuestos, dentro de los que se destacan carbohidratos, proteínas, ácidos nucleicos, lípidos y hormonas. Los procesos de crecimiento y diferenciación se alternan durante todas las etapas de vida de la planta, desde el desarrollo del embrión, pasando por la etapa juvenil hasta la planta adulta en donde continuamente se están diferenciando apéndices tales como hojas, flores y frutos. Las investigaciones básicas han establecido la importancia de las fitohormonas, en el proceso de desarrollo vegetal, al inducir respuestas fisiológicas específicas y rápidas del desarrollo cuandose introducen en plantas (ejemplo: inducción de maduración por etileno, caída de hojas con auxinas, estímulo del crecimiento vegetativo por citocininas, etc.). El efecto de varios de los otros compuestos como azúcares, lípidos y vitaminas en el desarrollo vegetal es menos directo, por lo que no tienen alta capacidad para modificar procesos de manera inmediata.1
Desarrollo en Inga o Guama
Índice
· 1 Embriogénesis 
· 1.1 Suspensor
· 1.2 Embrión globular
· 1.3 Genes involucrados en la embriogénesis
· 2 Germinación
· 3 Crecimiento 
· 3.1 Genes involucrados en crecimiento
· 3.2 Crecimiento de la raíz
· 3.3 Desarrollo del Tallo 
· 3.3.1 Desarrollo Primario 
· 3.3.1.1 Estructuras radiales
· 3.3.1.2 Estructuras verticales
· 3.3.2 Desarrollo Secundario
· 3.4 Desarrollo de las Hojas 
· 3.4.1 Desarrollo del patrón dorsoventral
· 3.4.2 Desarrollo del patrón próximo-distal
· 4 Comparación del desarrollo de plantas y animales
· 5 Regulación de las vías del Desarrollo en plantas 
· 5.1 Factores de transcripción involucrados en el control del Desarrollo
· 5.2 Determinación del destino celular
· 5.3 Vías del desarrollo controladas por redes génicas
· 5.4 Regulación del desarrollo mediante la señalización célula-célula
· 6 Referencias
· 7 Véase también
Embriogénesis
Es la etapa del desarrollo en las plantas que abarca todos los procesos que ocurren justo luego de la fecundación hasta la dormancia o aletargamiento del embrión, que en el caso de las espermatofitas se da dentro de la semilla. Durante este tiempo, se establece el plan corporal de la planta: dicho plan corporal es el módulo básico de crecimiento que ha de repetirse conforme la planta crece.2
La embriogénesis se da de manera muy similar en todas las angiospermas (además de compartir muchos procesos con el desarrollo embrionario en gimnospermas), pero presenta diferencias en la extensión del desarrollo del endosperma, del desarrollo del cotiledón y la extensión del desarrollo de los meristemas.3
Suspensor
La polaridad apicobasal de la planta se establece luego de la primera división en la que se genera una célula basal y una célula terminal (formada cerca del micrópilo) que darán origen al embrión y al suspensor repectivamente. El suspensor es una estructura que al parecer introduce el embrión al tejido gametofítico, además de orientar la superficie de absorción del embrión hacia su fuente de alimento funcionando entonces como un conducto de nutrientes para el embrión en desarrollo. Estas funciones no han sido demostradas pero se sugieren debido a que experimentalmente los embriones con suspensor tienen mayor probabilidad de sobrevivir que los embriones a los que se les remueve.4 Estudios en Phaseolus coccineus y Arabidopsis, han demostrado que en el estadio de 4 células hay una transcripción diferencial en las células apicales y basales y por lo tanto, los genes son expresados selectivamente en las células del suspensor y del embrión. Sin embargo, hay evidencia genética de que el suspensor tiene la capacidad para desarrollar estructuras embrionarias como ocurre cuando se extirpa la célula apical y como consecuencia, parte del suspensor se diferencia en tejido embrionario.5 6 7
Embrión globular
Conforme el cigoto sufre más divisiones celulares, los patrones radial y axial se van diferenciando. Las células del embrión propiamente dicho, continúan dividiéndose hasta formar una estructura conocida como estadio globular o embrión globular. En este punto se pueden distinguir tres capas celulares: la protodermis, el meristema fundamental y el procambio.8 La protodermis es el tejido embrionario que da origen al tejido dérmico o epidermis y contribuye a las capas externas que protegen a la planta. Las células que componen la protodemis, sólo sufren divisiones anticlinales. Es decir, divisiones perpendiculares a la superficie; el meristema fundamental se ubica por debajo de la protodermis y origina el tejido fundamental que incluye a la corteza y a la médula; finalmente el procambio (también conocido como procambium), se forma hacia el centro del embrión y corresponde al tejido embrionario que dará lugar a los tejidos vasculares del xilema y floema cuya función es de soporte y transporte de fluidos hacia y desde los diferentes apéndices de la planta.8
La forma globular del embrión empieza a cambiar conforme las divisiones celulares ocurren y comienzan a formarse los cotiledones. En el caso de las "dicotiledóneas" que tienen dos cotiledones, estos le dan al embrión una forma acorazonada.8 Hormonas como las auxinas parecen mediar la transición de simetría radial a bilateral.9 En las monocotiledóneas no se presenta la configuración de embrión acorazonado.
El embrión posee además células que constantemente se están regenerando y que se encargan del crecimiento de la planta tanto en altura como en diámetro; éstas células son células madre que componen los tejidos denominados meristemas. En plantas, estos meristemas son:
· Meristema apical del vástago: Generará las hojas luego de la germinación y permitirá la transición hacia el desarrollo reproductivo. Este meristema se encuentra protegido por estípulas, coléteres y/o mucílago.2 8
· Meristemas intercalares
· Meristema apical de la raíz: Encargado del crecimiento de la raíz. Está protegico por una estructura denominada cofia o caliptra que lo protege y facilita la penetración de las raíces en la tierra sin ser dañadas. Estas células se van desgastando rápidamente por lo que continuamente se regeneran.2
Artículo principal: Meristemo
Genes involucrados en la embriogénesis
· AtML1 (Capa meristemática 1): Presente en Arabidopsis. Se expresa en la célula hija apical, pero no en la célula hija basal en el estadio de dos células.6
· Sus1, Sus2 y raspberry1: Suspensores mutantes de Arabidopsis.7
· SIN1: Primer gen efector materno identificado. Se ha encontrado que este gen debe ser expresado en el esporofito para que el desarrollo embrionario se de normalmente.10
· MEDEA: Gen efector materno y gametofítico femenino que afecta la impronta génica que es expresada por el gametofito femenino y por los alelos heredados maternamente en el cigoto, pero no por alelos heredados paternamente.10
· LEC1 (LEAFY COTYLEDON 1): Primer gen en ser identificado como gen mutante con cotiledones tipo hoja.8
El papel de los genes extracigóticos en la embriogénesis de plantas es menos claro y hay por lo menos tres fuentes de influencias potenciales: el tejido esporofítico, el tejido gametofítico y el endosperma.10
Germinación
Es la fase postembrionaria del desarrollo de la planta. No todas las plantas germinan luego de que el embrión ha completado su desarrollo; muchas pasan por periodos de latencia en los que el metabolismo se hace más lento, la semilla se deshidrata y los tegumentos se endurecen para proteger al embrión. Hormonas como el ácido abscísico son importantes en el mantenimiento de la latencia y las giberelinas en su ruptura, pues permiten la conversión de almidón en glucosa8 además condiciones como la humedad, la temperatura, el oxígeno y la luz. Por ejemplo en regiones con climas temperados, muchas semillas necesitan una temperatura de 5 °C para romper la dormancia (Estratificación); mientras que semillas disecadas necesitan la rehidratación (Imbibición).
Figura 2. Germinación en Arabidopsis (Epigeal) y en Vicia faba (Hipogeal)
La germinación se da como producto de interacciones muy evolucionadas entre la semilla y las condiciones del medio que la rodea. Durante la germinación el embrión extrae nutrientes del endosperma o,en algunos casos, de los cotiledones. En monocotiledóneas, el embrión interactúa con el endosperma mediante giberelinas que activan cascadas de señalización que terminan con la ruptura de almidón en azúcar. Los cloroplastos empiezan a diferenciarse tan pronto el tallo alcanza la superficie debido a la exposición a la luz.8 Elongación de las células forzan a la raíz a salir de la semilla y a dar la anatomía del tallo. Si la elongación se da entre los cotiledones y la radical, es decir en el hipocótilo, los cotiledonesson levantados por encima de la superficie del suelo y la plántula es llamada epigea Ej: Arabidopsis. Por el contrario, si la elongación toma lugar entre los cotiledones y el meristema apical, es decir en el epicótilo, los cotiledones se mantienen bajo el suelo y la plántula es llamada hipogea Ej: Haba o Vicia faba (Figura 2)11
Crecimiento
Las plantas son organismos modulares. Esto implica que su crecimiento ocurre mediante la repetición de módulos. Cada módulo consiste en una hoja con una yema axilar y el punto en donde se insertan las hojas son llamados nodos. Entre nodo y nodo hay un internodo. De esta forma, el crecimiento de las plantas consiste en la repetición de este patrón y en la expresión de las yemas axilares en apéndices reproductivos (flores) o vegetativos (ramas).
El crecimiento en longitud y grosor se da gracias a la acción de los meristemas.
Artículo principal: Meristemo
Genes involucrados en crecimiento
El tamaño de los meristemas es controlado por señales intercelulares mediadas por la acción de genes.
· CLV (CLAVATA): Se encuentra en Arabidopsis. Mutaciones en este gen llevan a un aumento en el tamaño del meristema apical del vástago y a producción de apéndices extra.8
· CLV1, CLV2, CLV3: Proteínas. CLV1 es una cinasa serina/tronina que se une a la proteína CLV2 que es un receptor transmembranal para la proteína CLV3. Acopladas, estas proteínas limitan el número de células madre indiferenciadas en los meristemas vegetativo y floral.8
El desarrollo de cada una de las partes de la planta involucra sets diferentes de genes.
Crecimiento de la raíz
Artículo principal: Desarrollo de la raíz
Desarrollo del Tallo
La arquitectura y el gestalt de la planta están determinadas por la cantidad de yemas que están presentes y se expresan sobre las axilas de las hojas. La punta del vástago se involucra en un fenómeno denominado "dominancia apical", que consiste en la regulación del patrón de ramificación de la planta por el extremo del vástago. Sobre este punto, las hormonas parecen tener un importante papel en la regulación ambiental de la arquitectura vegetal. Además de la plasticidad ambiental, la arquitectura de la planta está regulada genéticamente.8
Algunas hormonas que intervienen en el patrón de crecimiento de las plantas son:
· Auxina: Producida por las hojas jóvenes y transportada hasta su base. Puede suprimir la formación de yemas axilares.8
· Citoquinina: Puede liberar yemas. Por su acción se dan fenómenos como que las yemas produzcan sus propias yemas llevando a un gestalt complejo.8
Desarrollo Primario
Un tallo consta de nodos (de donde se desprenden las hojas) que están separados por internados y un meristema apical (SAM) en la punta del tallo o sobre el primordio de hoja más joven. En este meristema puede apreciarse tanto estructuras radiales como verticales:
Estructuras radiales
-Zona central: células grandes y de división lenta. En su interior está la zona de costilla que genera las capas centrales del tallo (Figura 3).
-Zona periférica: células más pequeñas y de división rápida. Inicia las hojas, las yemas axiales y las capas externas del tallo (Figura 3).
Figura 3. Estructuras radiales y verticales que permiten el desarrollo primario del tallo
Estructuras verticales
Se organiza en capas, siendo la más externa la túnica que consta de las capas L1 que origina la epidermis, L2 que origina el mesófilo y L3 que origina los haces vasculares; luego el corpus que son células menos organizadas (Figura 3).
Además puede encontrarse en dicotiledóneas la médula, un meristema que permite el engrosamiento primario. Sam varía de acuerdo a la especie, el estado de desarrollo y las condiciones de crecimiento; por ejemplo, las cícadas tienen el SAM más grande de las plantas vasculares, con 3mm de diámetro, mientras en Arabidopsis mide 50 μm.
Así como en las raíces, la auxina juega un papel en el establecimiento de SAM. En los estados tempranos de la embriogénesis la distribución polar de la proteína PIN1 lleva a la acumulación de auxina en la región apical, más tarde con mediación de la kinasa PINOID y la fosfatasa PP2, esta proteína produce una redistribución de la auxina, llevando a bajos niveles en la zona central. También se ven involucrados factores de transcripción como WUS (en la región subapical del estadio de 16 células), NAC y finalmente STM (en el estadio de corazón); juntos mantienen las células en un estado en que pueden proliferarse y así asegurar que la diferenciación en tejidos del tallo esté balanceada con la producción de nuevas células indeterminadas (Con embriones mutantes se ha visto que la expresión se ve afectada por los niveles y distribución de la auxina). Otro mecanismo que controla este equilibrio está dado por una retroalimentación negativa o negative feedback en la participan los genes y proteínas kinasa CLAVATA 1,2 y 3 (CLV1, 2 y 3) al suprimir la transcripción de WUS; consistente con este modelo, se ha observado que en mutantes clv el tamaño de SAM se incrementa considerablemente, mientras que en mutantes sus la sobreexpresión de CLV3 suprime la actividad de WUS y por tanto el meristema se pierde.12
Desarrollo Secundario
Muchas dicotiledóneas y algunas monocotiledóneas presentan engrosamiento secundario. En monocotiledóneas, grupos de células del parénquima se vuelven meristemáticas produciendo haces vasculares adicionales. En dicotiledóneas, está presente el cámbium vascular que genera tejido vascular secundario con células de rayo y el cámbium corcho que genera una capa protectora: el corcho. El cámbium corcho, el corcho y el parénquima forman el peridermo.
Desarrollo de las Hojas
Investigaciones sobre pteridófitas y angiospermas indican que el primordio de hoja más joven visible no está determinado para producir una hoja sino un vástago.13 El establecimiento del eje dorsoventral es esencial para determinar la forma aplanada característica de la mayoría de las hojas. Para modelar las formas menos conspicuas y más detalladas de éstas, muchas veces la planta recurre a estrategias como la apoptosis.8
La organización de las hojas o filotaxia puede cumplir tres patrones: alternado, decusado y espiral que dependen de varios factores intrínsecos así como ambientales y mutaciones que llevan al cambio de la forma y tamaño del meristema. Diversas aproximaciones han mostrado evidencia que sitios de iniciación de hojas corresponden a zonas con acumulación de auxina, pues se ve una distribución asimétrica de las proteínas PIN.14
La emergencia de una hoja se da a partir del eje radial del meristema apical y su geometría y orientaron depende del desarrollo adecuado de los ejes que la conforman: próximo- distal, adaxial-abaxial y centro-lateral. Las primeras indicaciones para formar el primordio de hoja es la división periclinal en las capas subepidérmicas del SAM creando una protuberancia que define el eje próximo- distal de la futura hoja.15
Desarrollo del patrón dorsoventral
Cuando el primordio de hoja emerge, la superficie que quedará arriba apunta hacia el centro del meristema y es llamada adaxial; la superficie que quedará debajo apunta en contra del centro del meristema y es llamada abaxial. Inicialmente, el crecimiento es simétrico pero luego en este eje se evidencia una asimetría en cuanto al tipo de células como en la epidermis (Ej: estomas y tricomas) y su crecimiento diferencial como en el xilema y el floema. Las hojas se separan del tallo dado que el crecimiento adaxial supera el abaxial. Hay evidencia de que el tejido adaxial promueve la formación de meristemas axiales y mantiene el desarrollo de SAM.
El establecimiento de una superficie adaxial (haz) y una abaxial (envés) está a cargo de un grupo de genes conocidos como PHABULOSA (PHAB), PHAVOLUTA (PHAV), KANADI (KAN), YABBY.,16 PHANTASTICA (PHAN), PINHEAD (PNH) y ARGONAUTE1 (AGO1).
Figura 4. Ejes en el desarrollo de las hojas
Las proteínas PHAB y PHAV se acumulan en la superficie adaxial de la hoja al ser activadas por un ligando lipídico. Por el contrario, las proteínas KAN y YABBY se acumulan y expresanen el lado abaxial. La proteína KAN activa los genes YABBY. Estos dos grupos de genes (los de expresión adaxial y los de expresión abaxial) restringen la actividad de sus antagonistas. Es decir, PHAB y PHAV restringen la acción de KAN y YABBY a la superficie abaxial, mientras que KAN y YABBY restringen la acción de PHAB y PHAV a la superficie adaxial.8
- PHAN: Codifica para factor de transcripción que se expresa en el meristema apical en el lugar de iniciación de la hoja. Es necesario para el desarrollo del eje abaxial-adaxial. En mutantes la hoja pierde el eje y desarrolla simetría radial.
- PNH y AGO1: Necesario para el desarrollo del eje adaxial. Pérdida de función de PNH hace que el genotipo de "ago1" sea más severo. PNH es expresado más fuertemente en la parte adaxial del primordio más joven P1 y en el segundo primordio más joven P2 es únicamente expresado en el lado adaxial.
- PHAB: Se restringe a la región adaxial de P2. hojas phab tienen forma redonda o de trompeta dado que carecen de lámina y solo la epidermis adaxial queda rodeando la hoja.
- YABBY: Necesario para el desarrollo del eje abaxial. La expresión inicia en las células subepidérmicas del I2, luego en P1 se restringe a la epidermis y el mesófilo esponjoso y desaparece en la hoja madura.
- LAM1: Mantiene el eje adaxial-abaxial. mutantes lam1 muestran un desarrollo normal hasta P2, sin embargo y a pesar de que se inició una lámina, células adaxiales son reemplazadas por células abatibles.
Desarrollo del patrón próximo-distal
Este eje se hace visible en el estadio P3 y su desarrollo es basipétalo, al igual que el transporte de auxina. Se ve influenciado por el gen KN1 de la familia de genes KNOX, necesarios en la iniciación y desarrollo del meristema apical; es silenciado en la zona de iniciación de las hojas. EL modelo se basa en una ganancia de función, es decir, una proteína está presente donde normalmente está ausente. En la región proximal de la hoja se experimenta una alta concentración de morfógenos que hacen que se adopte una forma de hoja, mientras en la región distal la concentración de morfógenos es menor y por tanto se da un destino de borde.17
Comparación del desarrollo de plantas y animales
Plantas y animales son rápidamente distinguibles por sus características morfológicas, relacionadas claramente, con patrones del desarrollo. El ancestro común, descrito como un eucariote que poseía mitocondrias y metabolismo aerobio, sistema endomembranoso (aparato de Golgi, citoplasma compartimentalizado y vesículas para endocitosis y exocitosis), citosqueleto con actina y tubulina, receptores de membrana que permitían responder a señales ambientales y cambiar la expresión de genes y capacidad para realizar division mitotica y meiotica existió hace un billón de años atrás. Todas estas caracteríaticas fueron heredadas por los progenitores de los reinos animal y vegetal con la diferencia de la obtención de cloroplastos, metabolismo autotrófico y pared celular por parte de las plantas,.18 19
Regulación de las vías del Desarrollo en plantas
Se han encontrado gran variedad de genes que desempeñan importantes papeles en la regulación del crecimiento, la diferenciación celular y los patrones de formación en las plantas, usando como modelo de estudio a Arabidopsis. Después de la secuenciación del genoma de Arabidopsis y de estudios relacionados con la función de cada uno de sus genes se han logrado gran cantidad de avances en este campo. En la mayoría de los estudios, los genes importantes para el desarrollo han sido encontrado mediante elaboradas búsquedas en la descendencia de plantas a las que se les realizan procesos de mutagénesis. Los esfuerzos se han concentrado en mapear, clonar y secuenciar genes mutantes.20
En estos momentos de la historia y gracias a los avances en la Biología del Desarrollo en plantas, los cuales han usado estudios de genética molecular acoplados con análisis clonales, biología celular, estudios bioquímicos y fisiológicos se han encontrados importantes genes involucrados que codifican para factores de transcripción o para componentes de las diferentes vías de señalización. Aunque aún se está lejos de entender por completo el mecanismo usado por las plantas para la regulación de las vías de desarrollo algunas aproximaciones hasta el momento incluyen:21
· La expresión de los genes que codifican para factores de transcripción son los responsables de determinar la identidad de células, órganos y tejidos.
· El destino celular se encuentra determinado por su posición y no por su historia clonal
· Las vía de desarrollo son controladas por redes de genes.
· El desarrollo también es regulado por la señalización célula-célula.
Factores de transcripción involucrados en el control del Desarrollo
Los factores de transcripción son proteínas que presentan una alta afinidad por el ADN y que son capaces de activar la expresión génica. Después de la secuenciación del genoma de Arabidopsis se descubrió que su genoma codificaba para aproximadamente 26 000 genes de los cuales alrededor 1500 codifican para factores de transcripción. Estos 1500 factores de transcripción pertenecen a numerosas familias de genes, algunas de las cuales sólo han sido encontradas en plantas y la mayoría en eucariotas. Dentro de las familas de genes involucradas con el desarrollo en plantas las más estudiadas y de las que más se tiene información hasta el momento son las cajas MADS y los genes Homeobox.22
Genes de las cajas MADS:
Son claves en la regulación de importantes procesos biológicos tanto en plantas como en animales y hongos. Dentro del genoma de Arabidopsis se encuentran aproximadamente 30 genes MADS involucrados en aspectos para el control del desarrollo en las raíces, hojas, óvulos y frutos. Estos genes son expresados en una manera restringida de forma espacial y temporal restringida y su expresión está determinada por eventos de señalización. Una de las funciones más importantes de esta familia es el desarrollo de la identidad floral.23
Genes Homeobox:
Codifican para un homeodominio de proteínas que actúan como factores de transcripción, las cuales desempeñan un importante papel en la regulación de las vías del desarrollo en todos los eucariotas. Las proteínas del homeodominio pertenecientes a la clase KNOTTED1 (KN1) están involucrados en el mantenimiento de la indeterminación en el meristemo apical del tallo. La mutación kn1 ha sido encontrada en maíz y produce una expresión anormal de genes y la ganancia de función.24
Determinación del destino celular
En la mayoría de los organismos vivos las células en los diferentes tipos de tejidos se producen clonalmente de una misma célula madre. Sin embargo, en plantas, la evidencia soporta la idea de que el destino celular no depende del linaje celular sino que es determinada por la posición. En la mayoría de los casos las células epidérmicas de las raíces se derivan de un pequeño grupo de células madre en la capa L1. Sin embargo, los derivativos de la capa L1 están comprometidos a ser células epidérmicas debido a que se encuentran posicionadas en la parte superior de la capa celular cortical y no porque se derivan clonalmente de las células madre en la capa L1.25
El plano en el cual una célula se divide determinará la posición de la célula hija dentro de un tejido y esta posición determinará el destino de esta célula. La más fuerte evidencia que se tiene de la importancia de la posición, consiste en experimentos realizados en los cuales se examina el destino de células que son desplazadas de su posición normal a otra (mover grupos de células de una capa a otra). Las divisiones en las capas L1 y L2 son anticlinales y este tipo de división es la responsable de las capas iniciales.26
Vías del desarrollo controladas por redes génicas
A pesar que el entendimiento del papel de las redes génicas en el control de las vías del desarrollo, muchos descubrimientos apuntan a un modelo en el cual eventos de señalización a larga distancia controlan la expresión de genes que codifican para factores de transcripción.Estos factores de transcripción van a determinar el carácter o actividades de una célula o tejido dado. Estos mecanismos además, pueden involucrar “ feed-back loops” en los cuales dos o más genes interactúan regulando la expresión de otros. Estas interacciones de genes en las redes génicas han sido encontradas en el meristemo apical del tallo.27
Regulación del desarrollo mediante la señalización célula-célula
Si el destino celular está determinado por la posición y no por el linaje, éstas deben ser capaces de saber su posición relativa con respecto a otras células, tejidos y órganos. Las células, tejidos y órganos adyacentes proveen esta información posicional. Las células en plantas multicelulares se encuentran en contacto estrecho con otras cerca de ellas, coordinando cuidadosamente el comportamiento que cada célula debe seguir dentro de un órgano o tejido. La coordinación de la actividad celular requiere de la comunicación célula-célula, lo cual requiere a su vez de importantes genes. La comunicación célula-célula ocurre por al menos tres mecanismos:28
· Señalización inducida por ligandos.
· Señalización hormonal.
· Señalización por el tráfico de proteínas o mARNs.
image18.png
image19.png
image20.png
image21.png
image2.jpeg
image3.jpeg
image4.gif
image5.gif
image6.gif
image7.gif
image8.gif
image9.gif
image10.gif
image11.gif
image12.gif
image13.gif
image14.gif
image15.gif
image1.png
image16.png
image17.png