Logo Studenta

baixardoc.com-movimiento-parabolico-fisica

¡Este material tiene más páginas!

Vista previa del material en texto

1. El patinador deja la rampa A con una velocidad inicial de
 A
v a un ángulo
de 30°. Si golpea el suelo en B, determine
 A
v y el tiempo de vuelo.
 Figura 01
Solución
Fijamos nuestro sistema de referencia sobre la gráfica del enunciado.
Figura 02 Sistema de referencia
Recordemos que las ecuaciones que gobiernan el movimiento en dos
dimensiones bajo aceleración constante:
2
0 0
2
0 0
1
2
 (1)
1
2
 x x
 y y
 x x v t a t 
 y y v t a t 

   

  

 
De la figura 02 se puede observar que:
 x
 y
 
 
0
0
0
0
 x
 y


 
0
0
cos cos 30
sen sen 30
 x A A
 y A A
v v v
v v v
 
 
  
  
 
2
0
9,8 m/s
 x
 y
a
a g 

   
 
Remplazando estas condiciones en la ecuación (1):
2
0,866
 (2)
0,5 4,9
 A
 A
 x v t 
 y v t t 
 

  
 
En la figura 03 se observa el punto de impacto. Nótese que a tiempo que
tarda desde que salió hasta que llegue al punto de impacto se denomina
tiempo de vuelo.
Figura 03 Ubicación del punto de impacto
Se puede ver que cuando halla recorrido un tiempo igual al tiempo de
vuelo, el patinador se encontrará en el punto B, que, de acuerdo a nuestro
sistema de referencia, está ubicado en (5,-1). Entonces:
5
1
v
 x
t t 
 y

  
 
 
Remplazando en la ecuación (2):
2
 5 0,866 (3)
1 0,5 4,9 (4)
 A v
 A v v
v t 
v t t 

  
 
Del primero se obtiene que:
5
 0,866 A
v
v
t 

 
Remplazando en la ecuación (4):
 x
 y
 
 
2
2
5
1 0,5 4,9
0,866
1 2,87 4,9
v v
v
v
t t 
t 
t 
 
   
 
  
 
De donde se puede obtener:
2
2
3,87 4,9
3,87
4,9
3,87
4,9
v
v
v
t 
t 
t 



 
De donde se obtiene que el tiempo de vuelo será:
0,89 s
v
t  
Remplazando este valor en la ecuación (3) se obtiene:
5 0,866 0,89
 A
v   
Por lo que:
6,49 m/s
 A
v  
 
2. El “pitcher” lanza la bola horizontalmente a una rapidez de 140 pies/s
desde una altura de 5 pies. Si el bateador está a 60 pies del lanzador,
determine el tiempo para que la bola llegue al bateador y la altura h a la
cual pasa por él. ( PROB. ADICIONAL)( PROB. ADICIONAL) 
 Figura 01
Solución
Fijamos nuestro sistema de referencia sobre la gráfica del enunciado.
Figura 02 Sistema de referencia
Recordemos que las ecuaciones que gobiernan el movimiento en dos
dimensiones bajo aceleración constante:
2
0 0
2
0 0
1
2
 (1)
1
2
 x x
 y y
 x x v t a t 
 y y v t a t 

   

  

 
De la figura 02 se puede observar que:
 x
 y
 
0
0
0
0
 x
 y


 
0
0
140 pies/s
0
 x
 y
v v
v
 

 
2
0
32,2 pies/s
 x
 y
a
a g 

   
 
Remplazando estas condiciones en la ecuación (1):
2
140
 (2)
4,9
 x t 
 y t 
 

  
 
En la figura 03 se observa el punto de impacto. Nótese que a tiempo que
tarda desde que salió hasta que llegue al punto de impacto se denomina
tiempo de vuelo.
Figura 03 Ubicación del punto de impacto
Se puede ver que cuando halla recorrido un tiempo igual al tiempo de
vuelo, el balón se encontrará en el punto B, que, de acuerdo a nuestro
sistema de referencia, está ubicado en (60,-(5-h)). Entonces:
 
60
5
v
 x
t t 
 y h

  
  
 
Remplazando en la ecuación (2)
  2
 60 140 (3)
5 4,9 (4)
v
v
t 
h t 

   
 
Del primero se obtiene que:
0,429 s
v
t  
Remplazando en la ecuación (4):
 
2
5 4,9 0, 429hh  
De donde se despeja que la altura h será:
 x
 y
BB
 
Y= - 16.1t^2Y= - 16.1t^2
-(5-h)=-16.1 t^2-(5-h)=-16.1 t^2
5-h = 16.1 (0.429)^25-h = 16.1 (0.429)^2
 
 2,4 fth  
 
3. Se lanza la pelota desde la azotea del
edificio. Si golpea el suelo en B en 3
s, determine la velocidad inicial
 A
v y
el ángulo de inclinación
 A
 al cual
fue lanzada. También, determine la
magnitud de la velocidad cuando
golpea el suelo. (ADICIONAL)
 Figura 01 
Solución
Fijamos nuestro sistema de referencia sobre la gráfica del enunciado.
Figura 02 Sistema de referencia
Recordemos que las ecuaciones que gobiernan el movimiento en dos
dimensiones bajo aceleración constante:
 x
 y
 
 
2
0 0
2
0 0
1
2
 (1)
1
2
 x x
 y y
 x x v t a t 
 y y v t a t 

   

  

 
De la figura 02 se puede observar que:
0
0
0
0
 x
 y


 
0
0
cos
sen
 x A
 y A
v v
v v
 
 


 
2
0
32,2 pies/s
 x
 y
a
a g 

   
 
Remplazando estas condiciones en la ecuación (1):
2
cos
 (2)
sen 16,1
 A
 A
 x v t 
 y v t t 
 
 
  

   
 
En la figura 03 se observa el punto de impacto. Nótese que a tiempo que
tarda desde que salió hasta que llegue al punto de impacto se denomina
tiempo de vuelo, el cual por dato del problema es 3 segundos
Figura 03 Ubicación del punto de impacto
Se puede ver que cuando halla recorrido un tiempo igual al tiempo de
vuelo (el cual nos dan en el problema y es 3 segundos), el balón se
encontrará en el punto B, que, de acuerdo a nuestro sistema de referencia,
está ubicado en (60,-75). Entonces:
 x
 y
 
 
60
3
75
v
 x
t 
 y

  
 
 
Reemplazando en la ecuación (2).
60 3 cos (3)
75 3 sen 144,9 (4)
 A
 A
v
v
 
 

  
 
Del primero se obtiene que:
20
cos
 A
v
 
 
Remplazando en la ecuación (4):
2075 3 sen 144,9
cos
69,9 60ta n
 
 
 
    
 

 
De donde se puede obtener:
1 69,9
tan
60
 
     
 
 
De donde se obtiene que el tiempo de vuelo será:
49,36   
Remplazando este valor en la ecuación (3) se obtiene:
60 3 cos49,36
 A
v  
Por lo que:
30,7 m/s A
v 
 
Luego la velocidad de choque estará dada por dos componentes:
0
0
 (5)
 x x x
 y y y
v v a t 
v v a t 
  

  
 
En donde remplazando las condiciones a partir de la figura 02, donde se
utilizan los valores de la velocidad inicial y el ángulo inicial encontrados
anteriormente:
0
0
cos 30,7c os4 9,36 20
sen 30,7s en 49,36 23,3
 x A
 y A
v v
v v
 
 
   
   
 
2
0
32,2 m/s
 x
 y
a
a g 

   
 
De donde se obtiene que las velocidades será:
20
23,3 32,2
 x
 y
v
v t 

  
Como el tiempo de vuelo es 3 segundos, tenemos las velocidades finales
en x e y serán:
 
 
 
20
23,3 32,2 3 73,3
 x
 y
v
v

   
 
Por lo tanto la magnitud de la velocidad final, estará dada por:
2 2
2 220 73,3
76 pies/s
 x y
v v v 
 

 
 
4. Se dispara un proyectil a una rapidez
 A
v en un ángulo de 60°. Luego se
dispara un segundo proyectil con la misma rapidez 0,5 s después.
Determine el ángulo  del segundo proyectil, de modo que los dos
 proyectiles choquen. ¿En qué posición (x,y) sucederá esto? (PROB.(PROB.
ADICI)ADICI) 
 Figura 01
Solución
Fijamos nuestro sistema de referencia sobre la gráfica del enunciado.
Figura 02 Sistema de referencia
Análisis del pr imer proyectil :
Recordemos que las ecuaciones que gobiernan el movimiento en dos
dimensiones bajo aceleración constante:
 
 
2
1 10 10
2
1 10 10
1
2
 (1)
1
2
 x x
 y y
 x x v t a t 
 y y v t a t 

   

  

 
De la figura 02 se puede observar que:
10
10
0
0
 x
 y


 
10 10
10 10
cos 60cos60 30 pies/s
sen 60sen60 52 pies/s
 x
 y
v v
v v
 
 
   
   
 
2
0
9,8 m/s
 x
 y
a
a g 

   
 
Remplazando estas condiciones en la ecuación (1):
1
2
1
30 (2)
52 4,9
 x t 
 y t t 
 
  
 
Análisis del segundo pr oyecti l :
Las ecuaciones que gobiernan el movimiento en dos dimensiones bajo
aceleración constante, tomando que en cuenta que el segundo proyectil
sale 0,5 segundo después que el primero:
   
   
2
2 20 20
2
2 20 20
1
0,5 0,5
2
 (3)
1
0,5 0,5
2
 x x
 y y
 x x v t a t 
 y y v t a t 

     

    

 
De la figura 02 se puede observar que:
20
20
0
0
 x
 y


 
20 20
20 20
cos 60cos
sen 60sen
 x
 y
v v
v v
  
  
 
 
 
2
0
9,8 m/s
 x
 y
a
a g 

   
 
Remplazando estas condiciones en la ecuación (1):
  
   
2
2
2
60cos 0,5
 (4)
60sen 0,5 4,9 0,5
 x t 
 y t t 
 
 
  

    
 
Análisis del pun to de i ntersección:
En la figura 03 se observa el punto de intersección. Nótese que en este
 punto las coordenadas x,y de ambos proyectiles deberán coincidir.
 
 
Figura 03 Ubicación del punto de impacto
Suponiendo que el tiempo en el que se interceptan es
e
t desde que el
 primer proyectil fue lanzado entonces:
1 2
1 2
e
 x x
t t 
 y y

  

 
Remplazando en la ecuación (2) y (4):
  
    
22
30 60cos 0,5 ( 5)
52 4,9 60sen 0,5 4,9 0,5 (6)
e e
e e e e
t t 
t t t t 
 
 
 
    
 
Resolviendo la ecuación (5):
  
 
 
 
30 60cos 0,5
30 60 cos 30cos
30cos 30 2cos 30
30cos 30 2cos 1
e e
e e
e e
e
t t 
t t 
t t 
t 
 
  
  
  
 
 
 
 
 
De donde se obtiene:
cos
 (7)
2cos 1
e
t 
 
 


 
Resolviendo la ecuación (6):
 
    
 
 
2222
2 2 22
2 2 22
552 2 44,,9 9 6600sseen n 00,,5 5 44,,9 9 00,,55
552 2 44,,9 9 660 0 sseen n 3300sseen n 44,,9 9 00,, 222255
552 2 44,,9 9 660 0 sseen n 3300sseen n 44,,9 9 44,,9 9 11,, 222255
11,, 22225 35 3 00sseen n 660 0 sseen n 44,,9 9 5522
11,2,2 225 5 3300sseen n 660s0seen n 4477,,11
e e e e
e e e e e
e e e e e
e e e
e
t t t t 
t t t t t 
t t t t t 
t t t 
t 
 
  
  
  
  
    
     
     
   
  
 
De donde se obtiene:
1,225 30sen
 (8)
60sen 47,1
e
t 
 
 



 
Igualando las ecuaciones (7) y (8) y obtenemos:
     
1,225 30sen cos
 
60sen 47,1 2cos 1
2cos 1 1,225 30sen 60sen 47,1 cos
2,45cos 60cos sen 1,225 3 0sen 60cos sen 47,1cos
2,45cos 1,225 30sen 47,1cos
49,55cos 30sen 1,225
  
  
    
       
   
  


 
   
    
   
 
 
De donde se encuentra que
57,6º  
Reemplazando en la ecuación (7) para obtener el tiempo de intersección:
cos57,6º
7,4 s
2cos57,6º 1
e
t  

 
Por lo tanto, para encontrar la posición x,y en la que chocarán se debe
reemplazar este tiempo en las coordenadas de posición de cualquiera de
los dos proyectiles (ya que serán la misma para ambos). Utilizando las
ecuaciones (2)
 
   
2
30 7,4
52 7,4 4,9 7,4
 x
 y

 
 
De donde se obtiene:
222 m; 116 m x y  
5. El bombero sostiene la manguera a un ángulo 30   con la horizontal y
el agua sale de la manguera A a una velocidad de 40 pies/s
 A
v  . Si el
 
chorro de agua golpea el edificio en B, determine sus dos posibles
distancias s del edificio. (PROB. ADICIONAL)(PROB. ADICIONAL) 
Solución
Fijamos nuestro sistema de referencia sobre la gráfica del enunciado.
Figura 02 Sistema de referencia
Recordemos que las ecuaciones que gobiernan el movimiento en dos
dimensiones bajo aceleración constante:
2
0 0
2
0 0
1
2
 (1)
1
2
 x x
 y y
 x x v t a t 
 y y v t a t 

   

  

 
 x
 y
 
 
De la figura 02 se puede observar que:
0
0
0
0
 x
 y


 
0
0
cos 40cos30 34,64 pies/s
sen 40sen30 20 pies/s
 x A
 y A
v v
v v
 
 
   
   
 
2
0
32,2 pies/s
 x
 y
a
a g 

   
 
Remplazando estas condiciones en la ecuación (1):
2
34,64
 (2)
20 16,1
 x t 
 y t t 
 

  
 
En la figura 03 se observa el punto de impacto. Nótese que a tiempo que
tarda desde que salió hasta que llegue al punto de impacto se denomina
tiempo de vuelo.
Figura 03 Ubicación del punto de impacto
Se puede ver que cuando halla recorrido un tiempo igual al tiempo de
vuelo, el chorro de agua se encontrará en el punto B, que, de acuerdo a
nuestro sistema de referencia, está ubicado en (s, 4). Entonces:
4
v
 x s
t t 
 y

  

 
Remplazando en la ecuación (2):
2
 34,64 (3)
4 20 16,1 (4)
v
v v
 s t 
t t 

 
 
 x
 y
 
De (3) se obtiene que:
34,64
 v
 s
t  
Remplazando en la ecuación (4):
2
2
2
4 20 16,1
34,64 34,64
4 0,577 0,0134
0 0 ,0134 0,577 4
 s s
 s s
 s s
   
    
   
 
  
 
De donde esa es una ecuación cuadrática, que se puede resolver aplicando
la fórmula general:
    
 
2
0,577 0,577 4 0,0134 4
2 0,0134
0,577 0,344
0,0268
 s
 s
  



 
De donde se obtiene las dos posibles s que satisfacen al problema:
1
2
34,4 m
8,7 m
 s
 s


 
 
6. De la manguera el agua sale a 40 pies/s
 A
v  .. Determine los dos posibles
ángulos  a que el bombero puede sostener la manguera, de modo que el
agua golpee el edificio en B. Considere que 20 pies s  . (ADICIONAL)(ADICIONAL) 
Figura 01
Solución
Fijamos nuestro sistema de referencia sobre la gráfica del enunciado.
Figura 02 Sistema de referencia
Recordemos que las ecuaciones que gobiernan el movimiento en dos
dimensiones bajo aceleración constante:
 x
 y
 
 
2
0 0
2
0 0
1
2
 (1)
1
2
 x x
 y y
 x x v t a t 
 y y v t a t 

   

  

 
De la figura 02 se puede observar que:
0
0
0
0
 x
 y


 
0
0
cos 40cos
sen 40sen
 x A
 y A
v v
v v
  
  
 
 
 
2
0
32,2 pies/s
 x
 y
a
a g 

   
 
Remplazando estas condiciones en la ecuación (1):
2
40cos
 (2)
40sen 16,1
 x t 
 y t t 
 
 
 

  
 
En la figura 03 se observa el punto de impacto. Nótese que a tiempo que
tarda desde que salió hasta que llegue al punto de impacto se denomina
tiempo de vuelo.
Figura 03 Ubicación del punto de impacto
Se puede ver que cuando halla recorrido un tiempo igual al tiempo de
vuelo, el chorro de agua se encontrará en el punto B, que, de acuerdo a
nuestro sistema de referencia, está ubicado en (20, 4). Entonces:
 x
 y
 
 
20
4
v
 x
t t 
 y

  

 
Remplazando en la ecuación (2):
 
  2
 20 40cos (3)
4 40sen 16,1 (4)
v
v v
t 
t t 
 
 

 
 
De (3) se obtiene que:
1
2cos
 v
t 
 
 
Remplazando en la ecuación (4):
2
2
2
1 1
4 40sen 16,1
2cos 2cos
16,1 1
4 20t an
4 cos
4 20t an 4,025sec
 
  
 
 
  
       
   
 
   
 
  
Recordando que 2 2sec 1 tan    , tenemos:
 2
2
2
2
4 20t an 4,025 1 tan
4 20t an 4,025 4,025t an
4 20t an 4,025 4,025t an
0 4 ,025t an 20t an 8,025
  
  
  
  
  
  
  
  
 
De donde esa es una ecuación cuadrática, que se puede resolver aplicando
la fórmula general:
    
 
2
20 20 4 4,025 8,025
tan
2 4,025
20 16,46
tan
8,05
 
 
  



 
De donde se obtiene las dos posibles la tangente del ángulo que satisfacen
al problema:
1
2
tan 4,53
tan 0,44
 
 


 
De donde se obtienen los ángulos:
1
1
1
2
tan 4,53 77,5º
tan 0,44 23,8º
 
 


 
 
 
 
 
 
7. La máquina de lanzar se ajusta para que la bola salga despedida con una
rapidez de 30 m/s
 A
v  . Si la bola golpea el suelo en B, determine los dos
 posibles ángulos
 A
 a que se lanzó. (PROB. ADICIONAL)(PROB. ADICIONAL) 
Figura 01
Solución
Fijamos nuestro sistema de referencia sobre la gráfica del enunciado.
Figura 02 Sistema de referencia
Recordemos que las ecuaciones que gobiernan el movimiento en dos
dimensiones bajo aceleración constante:
2
0 0
2
0 0
1
2
 (1)
1
2
 x x
 y y
 x x v t a t 
 y y v t a t 

   

  

 
De la figura 02 se puede observar que:
 x
 y
 
0
0
0
0
 x
 y


 
0
0
cos 30cos
sen 30sen
 x A
 y A
v v
v v
  
  
 
 
 
2
0
9,8 m/s
 x
 y
a
a g 

   
 
Remplazando estas condiciones en la ecuación (1):
2
30cos
 (2)
30sen 4,9
 x t 
 y t t 
 
 
 

  
 
En la figura 03 se observa el punto de impacto. Nótese que a tiempo que
tarda desde que salió hasta que llegue al punto de impacto se denomina
tiempo de vuelo.
Figura 03 Ubicación del punto de impacto
Se puede ver que cuando halla recorrido un tiempo igual al tiempo de
vuelo, el balón se encontrará en el punto B, que, de acuerdo a nuestro
sistema de referencia, está ubicado en (30, -1,2).Entonces:
30
1,2
v
 x
t t 
 y

  
 
 
Remplazando en la ecuación (2):
 
  2
 30 30cos (3)
1,2 30sen 4,9 (4)
v
v v
t 
t t 
 
 

  
 
De (3) se obtiene que:
1
cos
 v
t 
 
 
Remplazando en la ecuación (4):
 x
 y
 
 
2
2
1 1
1, 2 30sen 4,9
cos cos
1,2 30t an 4,9 sec
 
  
  
   
     
   
   
Recordando que 2 2sec 1 tan    , tenemos:
 2
2
2
2
1,2 30t an 4,9 1 tan
1,2 30t an 4,9 4,9t an
1,2 30t an 4,9 4,9t an
0 4 ,9 tan 30 tan 3,7
  
  
  
  
   
   
   
  
 
De donde esa es una ecuación cuadrática, que se puede resolver aplicando
la fórmula general:
     
 
2
30 30 4 4,9 3,7
tan
2 4,9
30 28,77
tan
9,8
 
 
  



 
De donde se obtiene las dos posibles la tangente del ángulo que satisfacen
al problema:
1
2
tan 6
tan 0,1255
 
 


 
De donde se obtienen los ángulo:
1
1
1
2
tan 6 80,5º
tan 0,1255 7,15º
 
 


 
 
 
 
8. Se observa que el tiempo para que la bola golpea el suelo en B es de 2,5 s.
Determine la rapidez
 A
v y el ángulo y el ángulo
 A
 a que se arrojó. (PROB. 01)(PROB. 01) 
Figura 01
Solución
Fijamos nuestro sistema de referencia sobre la gráfica del enunciado.
Figura 02 Sistema de referencia
Recordemos que las ecuaciones que gobiernan el movimiento en dos
dimensiones bajo aceleración constante:
2
0 0
2
0 0
1
2
 (1)
1
2
 x x
 y y
 x x v t a t 
 y y v t a t 

   

  

 
De la figura 02 se puede observar que:
0
0
0
0
 x
 y


 
0
0
cos
sen
 x A
 y A
v v
v v
 
 


 
2
0
9,8 m/s
 x
 y
a
a g 

   
 
Remplazando estas condiciones en la ecuación (1):
 x
 y
 
 
2
cos
 (2)
sen 4,9
 A
 A
 x v t 
 y v t t 
 
 
  

   
 
En la figura 03 se observa el punto de impacto. Nótese que a tiempo que
tarda desde que salió hasta que llegue al punto de impacto se denomina
tiempo de vuelo, el cual por dato del problema es 3 segundos
Figura 03 Ubicación del punto de impacto
Se puede ver que cuando halla recorrido un tiempo igual al tiempo de
vuelo (el cual nos dan en el enunciado que es 2,5 segundos), el balón se
encontrará en el punto B, que, de acuerdo a nuestro sistema de referencia,
está ubicado en (50,-1,2). Entonces:
50
2,5
1,2
v
 x
t 
 y

  
 
 
Los cuales reemplazando en
50 2,5 cos (3)
1,2 2,5 sen 30,625 (4)
 A
 A
v
v
 
 

  
 
Del primero se obtiene que:
20
cos
 A
v
 
 
Remplazando en la ecuación (4):
20
1, 2 2,5 sen 30,625
cos
29,425 50 tan
 
 
 
 
   
 

 
De donde se puede obtener:
1 29,425
tan
50
 
     
 
 
 x
 y
 
De donde se obtiene que el tiempo de vuelo será:
30,5   
Remplazando este valor en la ecuación (3) se obtiene:
50 2,5 cos30,5
 A
v  
Por lo que:
23,2 m/s
 A
v  
 
9. Si el motociclista deja la rampa a 110 pies/s, determine la altura h que la
rampa B debe tener de modo que la motocicleta aterrice a salvo. (ADIC.)
 Figura 01
Solución
Fijamos nuestro sistema de referencia sobre la gráfica del enunciado.
Figura 02 Sistema de referencia
Recordemos que las ecuaciones que gobiernan el movimiento en dos
dimensiones bajo aceleración constante:
2
0 0
2
0 0
1
2
 (1)
1
2
 x x
 y y
 x x v t a t 
 y y v t a t 

   

  

 
De la figura 02 se puede observar que:
0
0
0
0
 x
 y


 
0
0
cos 110cos30 95,26 pies/s
sen 110sen30 55 pies/s
 x A
 y A
v v
v v
 
 
   
   
 
2
0
32,2 pies/s
 x
 y
a
a g 

   
 
Remplazando estas condiciones en la ecuación (1):
2
95,26
 (2)
55 16,1
 x t 
 y t t 
 

  
 
 x
 y
 
 
En la figura 03 se observa el punto de impacto. Nótese que a tiempo que
tarda desde que salió hasta que llegue al punto de impacto se denomina
tiempo de vuelo.
Figura 03 Ubicación del punto de impacto
Se puede ver que cuando halla recorrido un tiempo igual al tiempo de
vuelo, el motociclista se encontrará en el punto B, que, de acuerdo a
nuestro sistema de referencia, está ubicado en (350,-(30-h)). Entonces:
 
350
30
v
 x
t t 
 y h

  
  
 
Remplazando en la ecuación (2):
  2
350 95,26 (3)
30 55 16,1 (4)
v
v v
t 
h t t 

   
 
Del (3) se obtiene que:
3,674
v
t  
Remplazando en la ecuación (4):
     
2
30 55 3,674 16,1 3,674
30 202,7 217,32
14,7 m
hh
hh
hh
   
  

 
14.7 pie = 4.7 metros14.7 pie = 4.7 metros.
 x
 y
 
10. El beisbolista A batea la bola 40 pies/s
 A
v  y 60º
 A
  . Cuando la bola
está directamente sobre el jugador B éste comienza a correr debajo de ella.
Determine la rapidez constante
 B
v y la distancia d a la cual B debe correr
 para hacer la atrapada a la misma altura a la que fue bateada.
(PROBLEMA 03)(PROBLEMA 03) 
Figura 01
Solución
Fijamos nuestro sistema de referencia sobre la gráfica del enunciado.
Figura 02 Sistema de referencia
Análisis del bateador
Recordemos que las ecuaciones que gobiernan el movimiento en dos
dimensiones bajo aceleración constante:
 x
 y
 
 
2
1 10 10 1
2
1 10 10 1
1
2
 (1)
1
2
 x x
 y y
 x x v t a t 
 y y v t a t 

   

  

 
De la figura 02 se puede observar que:
10
10
0
0
 x
 y


 
10
10
cos 40cos60 20 pies/s
sen 40sen60 34,64 pies/s
 x A
 y A
v v
v v
 
 
   
   
 
1
2
1
0
32,2 pies/s
 x
 y
a
a g 

   
 
Remplazando estas condiciones en la ecuación (1):
2
20
 (2)
34,64 16,1
 x t 
 y t t 
 

  
 
Análisis del corredor
Las ecuaciones que gobiernan el movimiento en dos dimensiones bajo
aceleración constante:
2
2 20 20 2
2
2 20 20 2
1
2
 (3)
1
2
 x x
 y y
 x x v t a t 
 y y v t a t 

   

  
 
De la figura 02 se puede observar que:
20
20
15 pies
0
 x
 y


 
20
20
 0
 x B
 y
v v
v


 
2
2
0
0
 x
 y
a
a


 
Remplazando estas condiciones en la ecuación (1):
15
 (4)
0
 B x v t 
 y
  

 
 
Análisis de I ntersección
 
 
En la figura 03 se observa el punto de intersección entre el balón y el
corredor. Nótese que a tiempo que tarda desde que salió hasta que llegue
al punto de intersección se denomina tiempo de vuelo.
Figura 03 Ubicación del punto de intersección
Se puede ver que cuando halla recorrido un tiempo igual al tiempo de
vuelo, tanto el corredor como el balón se encontrarán en el punto B, que,
de acuerdo a nuestro sistema de referencia, está ubicado en (15+d,0).
Entonces:
1 2
1 2
15
0
v
 x x d 
t t 
 y y
  
  
 
 
Remplazando en la ecuación (2) y (4):
2
15 20 (5)
a partir de (2)
0 34,64 16,1 (6)
15 15 (7)
a partir de (4)
0 0
v
v v
 B v
d t 
t t 
d v t 
 

 
  
 (8)



 
Del (6) se obtiene que:
 0 16,1 2,152
v v
t t   
De donde se obtiene, que la solución no trivial es:
2,152 s
v
t  
Remplazando este tiempo de vuelo en la ecuación (5):
 15 20 2,152d  
 
De donde se obtiene, que la distancia d será:
 x
 y
 
43,3 piesd  
Esta distancia encontrada junto con el tiempo de vuelo, se reemplaza en la
ecuación (7)
 15 4 3,03 15 2,152 Bv   
De donde se despeja que:
20 pies/s
 B
v  
 
11. Un niño lanza al aire una pelota desde O con una rapidez
0
vv a un ángulo
1
 . Si luego lanza otra pelota a la misma rapidez
0
vv a un ángulo
2 1
   ,
determine el tiempo entre los lanzamientos de modo que las bolas choquen
en el aire en B. (PROB. ADICIO)(PROB. ADICIO) 
Figura 01
Solución
Fijamos nuestro sistema de referencia sobre la gráfica del enunciado.
Figura 02 Sistema de referencia
Recordemos que las ecuaciones que gobiernan el movimiento en dos
dimensiones bajo aceleración constante:
2
0 0
2
0 0
1
2 (1)1
2
 x x
 y y
 x x v t a t 
 y y v t a t 

   

  

 
 x
 y
 
 
Asumiendo que los subíndices 1 y 2 hacen referencia a los dos tipos demovimientos que podrá realizar el balón. Entonces de la figura 2 se puede
extraer
10
10
20
20
0
0
0
0
 x
 y
 x
 y




 
10 0 1
10 0 1
20 0 2
20 0 2
cos
sen
cos
sen
 x
 y
 x
 y
v v
v v
v v
v v
 
 
 
 




 
1
1
2
2
0
0
 x
 y
 x
 y
a
a g 
a
a g 

 

 
 
Remplazando estas condiciones en la ecuación (1) tenemos que las
ecuaciones que rigen los movimientos de ambas partículas serán (tomando
en cuenta que cada uno tendrá un tiempo diferente):
1 0 1 1
2
1 0 1 1 1
cos
 (2)
sen
2
 x v t 
 g 
 y v t t 
 
 
  


    
2 0 2 2
2
2 0 2 2 2
cos
 (3)
sen
2
 x v t 
 g 
 y v t t 
 
 
  


   
 
En la figura 03 se observa el punto de intercepto. Nótese que a tiempo que
tarda desde que salió hasta que llegue al punto de impacto llamaremos
tiempo de encuentro
e
t .
 x
 y
 
 
Figura 03 Ubicación del punto de impacto
Se puede ver que cuando ambos balones hallan recorrido un tiempo igual
al tiempo de encuentro, los balones se encontrarán en el punto B, que, de
acuerdo a nuestro sistema de referencia, está ubicado en (x,y). Entonces:
1 2
1 2
e
 x x x
t t 
 y y y
   
 
 
Es decir, primero debemos encontrar el tiempo en el que ambos llegan al
 punto B. Para ello reemplazamos esa última condición en (2) y (3)
0 1 1 0 2 2
2 2
0 1 1 10 2 2 2
cos cos (4)
sen sen (5)
2 2
v t v t 
 g g 
v t t v t t 
  
  
  
    
 
De (4) se obtiene que:
2
1 2
1
cos
 (6)
cos
t t 
 
 
 
Remplazando en la ecuación (5):
2
22 2
0 1 2 2 0 2 2 2
1 1
2
2 22 2
0 1 2 2 0 2 2 22
1 1
2
2 2
0 1 2 0 2 22
1 1
2
0 1 0 2
1
cos cos
sen sen
cos 2 cos 2
cos cos
sen sen
cos 2 cos 2
cos cos
sen sen
cos 2 cos 2
cos cos
sen sen
cos 2
 g g 
v t t v t t 
 g g 
v t t v t t 
 g g 
v t v t 
 g 
v v
  
  
  
  
  
  
  
  
  
 
  
 
          
   
    
   
  
2
2
2 22
1
cos 2
 g 
t t 
 
 

 
Multiplicando todo por 2
1
2cos  se tiene:
   
   
2 2 2
0 1 1 2 0 2 1 2 2 1 2
2 2
0 1 1 2 1 2 2 2 1
2 2
0 1 1 2 2 2 1
2 cos sen cos 2 sen cos cos cos
2 cos sen cos cos sen cos cos
2 cos sen cos cos
v v g t g t 
v gt 
v gt 
       
       
     
  
  
  
 
 
De donde se puede despejar que:
 
 
0 1 1 2
2 2 2
2 1
2 cos sen
cos cos
v
t 
 g 
   
  



 
Reemplazando en (6) para obtener:
 
 
 
 
0 1 1 22
1 2 2
1 2 1
0 2 1 2
1 2 2
2 1
2 cos sencos
cos cos cos
2 cos sen
cos cos
v
t 
 g 
v
t 
 g 
    
   
   
  
 
 
  



 
Como nos piden la diferencia de tiempo entre lanzamientos, tomamos la
diferencia:
 
 
 
 
  
 
  
  
 
 
1 2
0 2 1 2 0 1 1 2
2 2 2 2
2 1 2 1
0 1 2 2 1
2 2
2 1
0 1 2 2 1
2 1 2 1
0 1 2
2 1
2 cos sen 2 cos sen
cos cos cos cos
2 sen cos cos
cos cos
2 sen cos cos
cos cos cos cos
2 sen
cos cos
t t t 
v v
 g g 
v
 g 
v
 g 
v
 g 
      
    
    
  
    
    
  
  
  
 
 
 
 


 

 



 
 
SOLUCIÓN SOLUCIÓN PROBLEMA PROBLEMA 09:09:
SOLUCIÓN PROBLEMA 07:SOLUCIÓN PROBLEMA 07:
 
 
SOLUCIÓN PROBLEMA 08:SOLUCIÓN PROBLEMA 08:
PROBLEMA 02:PROBLEMA 02:
Un saco resbala por la rampa, como se muestra en la figura, con velocidad horizontal deUn saco resbala por la rampa, como se muestra en la figura, con velocidad horizontal de
12 m/s. Si la altura de la rampa con respecto al suelo es de 6m, determine el tiempo12 m/s. Si la altura de la rampa con respecto al suelo es de 6m, determine el tiempo
necesario para que el saco llegue al suelo y el rango R donde los sacos empiezan anecesario para que el saco llegue al suelo y el rango R donde los sacos empiezan a
apilarse.apilarse.
 
 
SOLUCIÓN:SOLUCIÓN:
PROBLEMA 04PROBLEMA 04
Una máquina desmenuzadora está diseñada para que lance virutas de madera aUna máquina desmenuzadora está diseñada para que lance virutas de madera a  = 25 / 
como se muestra en la figura. Si el tubo está orientado a 30° con respecto a la horizontal,como se muestra en la figura. Si el tubo está orientado a 30° con respecto a la horizontal,
ddetermine a que “h”, las virutas chocan con la pila si en este instante caen en la pila a 20 pies del
tubo.tubo.
SOLUCIÓN:SOLUCIÓN:
 
 
PROBLEMA 05:PROBLEMA 05:
La pista para este evento de carreras se diseñó para que los corredores salten laLa pista para este evento de carreras se diseñó para que los corredores salten la
pendiente a 30°, desde una altura de 1m. Durante una carrera se observó que el corredorpendiente a 30°, desde una altura de 1m. Durante una carrera se observó que el corredor
mostrado en la figura permanecía en el aire durante 1.5 s. Determine la rapidez a la cualmostrado en la figura permanecía en el aire durante 1.5 s. Determine la rapidez a la cual
estaba saliendo de la rampa, la distancia horizontal que recorre antes de chocar con elestaba saliendo de la rampa, la distancia horizontal que recorre antes de chocar con el
suelo y la altura máxima que alcanza. No tome en suelo y la altura máxima que alcanza. No tome en cuenta el tamaño de la motocicleta ni alcuenta el tamaño de la motocicleta ni al
corredor.corredor.
SOLUCIÓN:SOLUCIÓN:
 
 
PROBLEMA 06:PROBLEMA 06:
Determinar la velocidad inicial mínimaDeterminar la velocidad inicial mínima  , y el ángulo correspondiente , y el ángulo correspondiente 0 a la que el a la que el
balón debe ser pateado con el fin de balón debe ser pateado con el fin de que cruce por encima de los 3 que cruce por encima de los 3 m de altura de la m de altura de la valla.valla.
SOLUCIÓN:SOLUCIÓN:

Continuar navegando