Logo Studenta

Propiedades de los limites Cálculo Diferencial e Integral

¡Este material tiene más páginas!

Vista previa del material en texto

INSTITUTO POLITÉCNICO NACIONAL 
ESIME CULHUACAN 
Academia de Matemáticas 
 
RAMIREZ ORTIZ MARÍA VERÓNICA 
RAMIREZ CASTELLANOS ERNESTINA CONCEPCIÓN 
95 
 
Calculo de limites 
Fecha: _______________ 
 
 
Propiedades de los limites 
 
En Matemáticas a nivel superior se trabaja con indeterminaciones, que son expresiones tales como: 
∞
∞
, ∞, −∞, 00,
0
0
, 𝑦 
𝑐
0
, con 𝑐 ≠ 0. 
Para calcular limites es necesario considerar los siguientes teoremas: 
1 lim
𝑥→𝑎
𝑐 = 𝑐, si 𝑐 es una constante 
 
 
 5 lim
𝑥→𝑎
[𝑓(𝑥)𝑔(𝑥)] = lim
𝑥→𝑎
𝑓(𝑥) lim
𝑥→𝑎
𝑔(𝑥) 
2 lim
𝑥→𝑎
𝑥 = 𝑎 
 
 
 6 
lim
𝑥→𝑎
𝑓(𝑥)
𝑔(𝑥)
= 
lim
𝑥→𝑎
𝑓(𝑥)
lim
𝑥→𝑎
𝑔(𝑥)
 
3 lim
𝑥→𝑎
𝑐𝑓(𝑥) = 𝑐 lim
𝑥→𝑎
𝑓(𝑥) 
 
 
 
 7 lim
𝑥→𝑎
[𝑓(𝑥)]𝑛 = [lim
𝑥→𝑎
𝑓(𝑥)]
𝑛
 
4 lim
𝑥→𝑎
[𝑓(𝑥) ± 𝑔(𝑥)] = lim
𝑥→𝑎
𝑓(𝑥) ± lim
𝑥→𝑎
𝑔(𝑥) 
 
 
 
 8 lim
𝑥→𝑎
√𝑓(𝑥)
𝑛 = √lim
𝑥→𝑎
𝑓(𝑥)𝑛 , con 𝑛 ∈ 𝑍+ 
 
 
 
Ahora bien, en muchos casos sucede que al calcular directamente el límite de una función real de variable real, resulta una 
indeterminación y para quitarla (o eliminarla) puede emplearse la Regla de L´Hopital. 
La Regla de L´Hopital establece lo siguiente: si lim
𝑥→𝑎
𝑓(𝑥)
𝑔(𝑥)
=
0
0
, o bien lim
𝑥→∞
𝑓(𝑥)
𝑔(𝑥)
=
∞
∞
, donde 𝑓(𝑥) 𝑦 𝑔(𝑥) son funciones 
continuas, entonces lim
𝑥→𝑎
𝑓(𝑥)
𝑔(𝑥)
= lim
𝑥→𝑎
𝑓(𝑛)(𝑥)
𝑔(𝑛)(𝑥)
 , o bien lim
𝑥→∞
𝑓(𝑥)
𝑔(𝑥)
= lim
𝑥→∞
𝑓(𝑛)(𝑥)
𝑔(𝑛)(𝑥)
 
 
 
 INSTITUTO POLITÉCNICO NACIONAL 
ESIME CULHUACAN 
Academia de Matemáticas 
 
RAMIREZ ORTIZ MARÍA VERÓNICA 
RAMIREZ CASTELLANOS ERNESTINA CONCEPCIÓN 
96 
 
Calculo de limites 
Fecha: _______________ 
 
Limites 
 
Ejemplos I 
 
 
1) lim
𝑥→2
 
𝑥2−4
𝑥2−3𝑥+2
= 
22−4
22−3(2)+2
=
4−4
4−6+2
=
0
0
 
 
lim
𝑥→2
 
𝑥2 − 4
𝑥2 − 3𝑥 + 2
= lim
𝑥→2
 
𝑥2 − 22
𝑥2 − 3𝑥 + 2
 
= lim
𝑥→2
(𝑥 − 2)(𝑥 + 2)
(𝑥 − 2)(𝑥 − 1)
 
= lim
𝑥→2
(𝑥 − 2)
1
(𝑥 − 2)
(
𝑥 + 2
𝑥 − 1
) 
= lim
𝑥→2
𝑥 + 2
𝑥 − 1
 
=
2+2
2−1
=
4
1
= 4 
 
 
 
2) lim
𝑥→2 3⁄
9𝑥2−4
3𝑥−2
 =
9(2 3⁄ )
2
−4
3(2 3⁄ )−2
=
9(4 9⁄ )−4
3(2 3⁄ )−2
 =
4−4
2−2
 =
0
0
 
lim
𝑥→2 3⁄
9𝑥2 − 4
3𝑥 − 2
= lim
𝑥→2 3⁄
32𝑥2 − 22
3𝑥 − 2
 
= lim
𝑥→2 3⁄
(3𝑥)2 − 22
3𝑥 − 2
 
= lim
𝑥→2 3⁄
(3𝑥 − 2)(3𝑥 + 2)
(3𝑥 − 2) 
 
= lim
𝑥→2 3⁄
(3𝑥 − 2)
1
(3𝑥 − 2)
(3𝑥 + 2) 
= lim
𝑥→2 3⁄
3𝑥 + 2 = 3 (
2
3
) + 2 = 2 + 2 = 4 
 
 
 
 lim
𝑥→𝑎
𝑓(𝑥)
𝑔(𝑥)
=
0
0
 
 INSTITUTO POLITÉCNICO NACIONAL 
ESIME CULHUACAN 
Academia de Matemáticas 
 
RAMIREZ ORTIZ MARÍA VERÓNICA 
RAMIREZ CASTELLANOS ERNESTINA CONCEPCIÓN 
97 
 
Calculo de límites 
Fecha: _______________ 
 
 
3) lim
𝑥→3
𝑥2−2𝑥−3
𝑥2−3𝑥
=
32−2(3)−3
32−3(3)
=
9−6−3
9−9
=
0
0
 
 
 
 Lim
𝑥→3
𝑥2−2𝑥−3
𝑥2−3𝑥
= lim
𝑥→3
(𝑥−3)(𝑥+1)
𝑥(𝑥−3)
 
= lim
𝑥→3
(𝑥 − 3) (
1
𝑥 − 3
) (
𝑥 + 1
𝑥
) 
= lim
𝑥→3
𝑥 + 1
𝑥
 
=
3 + 1
3
=
4
3
 
 
lim
𝑥→3
𝑥2 − 2𝑥 − 3
𝑥2 − 3𝑥
= lim
𝑥→3
𝑑
𝑑𝑥
(𝑥2 − 2𝑥 − 3)
𝑑
𝑑𝑥
(𝑥2 − 3𝑥)
= lim
𝑥→3
2𝑥 − 2
2𝑥 − 3
=
2(3) − 2
2(3) − 3
=
6 − 2
6 − 3
=
4
3
 
4) lim
𝑥→1
𝑥3−1
𝑥−1
=
13−1
1−1
=
1−1
1−1
=
0
0
 
 lim
𝑥→1
𝑥3 − 1
𝑥 − 1
= lim
𝑥→1
(𝑥 − 1)(𝑥2 + 𝑥 + 1)
𝑥 − 1
= lim
𝑥→1
(𝑥2 + 𝑥 + 1) = 1 + 1 + 1 = 3 
 
Por división de polinomios. 
 
 
 
 
 
 
 
 
5) lim
𝑥→−1
𝑥3+1
𝑥2+1
=
−1+1
1+1
=
0
2
 = 0 
 
 
 
 
 
 𝑥3 − 1 
 𝑥2 + 𝑥 + 1 
 𝑥 − 1 
 − 𝑥3 + 𝑥2 
 
−𝑥 + 1 
 −𝑥2 + 𝑥 
 
0 
 INSTITUTO POLITÉCNICO NACIONAL 
ESIME CULHUACAN 
Academia de Matemáticas 
 
RAMIREZ ORTIZ MARÍA VERÓNICA 
RAMIREZ CASTELLANOS ERNESTINA CONCEPCIÓN 
98 
 
Calculo de Limites. 
Fecha: _______________ 
 
 
 
 
6) lim
𝑥→1
(
1
1−𝑥
−
3
1−𝑥3
) =
1
1−1
− 
3
1−1
=
1
0
−
3
0
 
1
1 − 𝑥
−
3
1 − 𝑥3
 =
1
(−1)(𝑥 − 1)
+
3
(−1)(−𝑥3 + 1)
 
 
=
−1
𝑥 − 1
+
3
𝑥3 − 13
 
 
=
−1
𝑥 − 1
+
3
(𝑥 − 1)(𝑥2 + 𝑥 + 1)
 
 
=
−1
(𝑥 − 1)
(1) +
3
(𝑥 − 1)(𝑥2 + 𝑥 + 1)
 
=
−1
(𝑥 − 1)
(𝑥2 + 𝑥 + 1) (
1
𝑥2 + 𝑥 + 1
) +
3
(𝑥 − 1)(𝑥2 + 𝑥 + 1)
 
=
−1(𝑥2 + 𝑥 + 1)
(𝑥 − 1)(𝑥2 + 𝑥 + 1)
+
3
(𝑥 − 1)(𝑥2 + 𝑥 + 1)
 
 
=
−(𝑥2 + 𝑥 + 1) + 3
(𝑥 − 1)(𝑥2 + 𝑥 + 1)
 
 
 
=
−𝑥2 − 𝑥 − 1 + 3
(𝑥 − 1)(𝑥2 + 𝑥 + 1)
 
 
 
=
−𝑥2 − 𝑥 + 2
(𝑥 − 1)(𝑥2 + 𝑥 + 1)
 
 
 
=
−(𝑥2 + 𝑥 − 2)
(𝑥 − 1)(𝑥2 + 𝑥 + 1)
 
 
 
=
−(𝑥 − 1)(𝑥 + 2)
(𝑥 − 1)(𝑥2 + 𝑥 + 1)
 
 
= −(𝑥 − 1) (
1
𝑥 − 1
) (
𝑥 + 2
𝑥2 + 𝑥 + 1
) 
 
 
= − (
𝑥 + 2
𝑥2 + 𝑥 + 1
) 
 
lim
𝑥→1
(
1
𝑥 − 1
− 
1
𝑥3 − 1
) = lim
𝑥→1
 − (
𝑥 + 2
𝑥2 + 𝑥 + 1
) = −(
1 + 2
12 + 1 + 1
) = −
3
3
= −1 
 
 
 INSTITUTO POLITÉCNICO NACIONAL 
ESIME CULHUACAN 
Academia de Matemáticas 
 
RAMIREZ ORTIZ MARÍA VERÓNICA 
RAMIREZ CASTELLANOS ERNESTINA CONCEPCIÓN 
99 
 
Calculo de Limites. 
Fecha: _______________ 
 
 
Ejemplos II lim
𝑥→∞
(
𝑓(𝑥)
𝑔(𝑥)
) =
∞
∞
 
lim
𝑥→∞
(
1
𝑥
) = 0, es un límite que se utiliza con mucha frecuencia 
 
 
7) lim
𝑥→∞
4𝑥
𝑥2−𝑥
=
∞
∞
 
 
 
 
 
lim
𝑥→∞
4𝑥
𝑥2 − 𝑥
 = lim
𝑥→∞
(
4𝑥
𝑥2 − 𝑥
) (1) 
= lim
𝑥→∞
4𝑥
(𝑥2 − 𝑥)
 
1
𝑥2
1
𝑥2
 
= lim
𝑥→∞
4 (𝑥
1
𝑥
)
1
𝑥
𝑥2
𝑥2
−
𝑥
𝑥2
 
= lim
𝑥→∞
4
1
𝑥
1 −
1
𝑥
 
 
 
=
lim
𝑥→∞
4
1
𝑥
lim
𝑥→∞
(1−
1
𝑥
)
 ….. Por Teorema 6 de Limites 
 
=
4 lim
𝑥→∞
1
𝑥
lim
𝑥→∞
1− lim
𝑥→∞
1
𝑥
 ….. Por Teorema 3 y 4 de Limites 
 
=
4 lim
𝑥→∞
1
𝑥
lim
𝑥→∞
1− lim
𝑥→∞
1
𝑥
 ……Aplicando lim
𝑥→∞
(
1
𝑥
) = 0 
 
=
4(0)
1 − 0
 =
0
1
= 0 
 INSTITUTO POLITÉCNICO NACIONAL 
ESIME CULHUACAN 
Academia de Matemáticas 
 
RAMIREZ ORTIZ MARÍA VERÓNICA 
RAMIREZ CASTELLANOS ERNESTINA CONCEPCIÓN 
100 
 
Calculo de Limites. 
Fecha: _______________ 
 
 
 
8) lim
𝑥→∞
2𝑥2−𝑥+3
𝑥3−8𝑥+5
=
∞
∞
 
 
lim
𝑥→∞
2𝑥2 − 𝑥 + 3
𝑥3 − 8𝑥 + 5
= lim
𝑥→∞
2𝑥2 − 𝑥 + 3
𝑥3
𝑥3 − 8𝑥 + 5
𝑥3
 
 
= lim
𝑥→∞
2𝑥2
𝑥3
−
𝑥
𝑥3
+
3
𝑥3
𝑥3
𝑥3
−
8𝑥
𝑥3
+
5
𝑥3
 
 
= lim
𝑥→∞
2
𝑥
−
1
𝑥2
+
3
𝑥3
1 −
8
𝑥2
+
5
𝑥3
 
 
= lim
𝑥→∞
2
1
𝑥
− (
1
𝑥
)
2
+ 3(
1
𝑥
)
3
1 − 8 (
1
𝑥
)
2
+ 5(
1
𝑥
)
3 
 
Utilizando las propiedades de límites 
lim
𝑥→∞
2
1
𝑥
− (
1
𝑥
)
2
+ 3(
1
𝑥
)
3
1 − 8 (
1
𝑥
)
2
+ 5(
1
𝑥
)
3 =
lim
𝑥→∞
(2
1
𝑥
− (
1
𝑥
)
2
+ 3(
1
𝑥
)
3
)
lim
𝑥→∞
(1 − 8 (
1
𝑥
)
2
+ 5(
1
𝑥
)
3
)
 
 
 
=
lim
𝑥→∞
2
1
𝑥
− lim
𝑥→∞
(
1
𝑥
)
2
+ lim
𝑥→∞
3 (
1
𝑥
)
3
lim
𝑥→∞
1 − lim
𝑥→∞
8 (
1
𝑥
)
2
+ lim
𝑥→∞
5 (
1
𝑥
)
3 
 
 
=
2 lim
𝑥→∞
1
𝑥
− lim
𝑥→∞
(
1
𝑥
)
2
+ 3 lim
𝑥→∞
(
1
𝑥
)
3
lim
𝑥→∞
1 − 8 lim
𝑥→∞
(
1
𝑥
)
2
+ 5 lim
𝑥→∞
(
1
𝑥
)
3 
 
 
=
2 lim
𝑥→∞
1
𝑥
− ( lim
𝑥→∞
1
𝑥
)
2
+ 3( lim
𝑥→∞
1
𝑥
)
3
lim
𝑥→∞
1 − 8 ( lim
𝑥→∞
1
𝑥
)
2
+ 5( lim
𝑥→∞
1
𝑥
)
3 
 
 
=
2(0) − 0 + 3(0)
1 − 8(0) + 5(0)
=
0
1
= 0 
 
 
 INSTITUTO POLITÉCNICO NACIONAL 
ESIME CULHUACAN 
Academia de Matemáticas 
 
RAMIREZ ORTIZ MARÍA VERÓNICA 
RAMIREZ CASTELLANOS ERNESTINA CONCEPCIÓN 
101 
 
Calculo de Limites. 
Fecha: _______________ 
 
9) lim
𝑥→∞
(−𝑥+1)(2𝑥+1)(4𝑥−6)
20𝑥3+2
=
∞
∞
 
 
lim
𝑥→∞
(−𝑥 + 1)(2𝑥 + 1)(4𝑥 − 6)
20𝑥3 + 2
 = lim
𝑥→∞
(−𝑥 + 1)(2𝑥 + 1)(4𝑥 − 6)
𝑥3
20𝑥3 + 2
𝑥3
 
 
= lim
𝑥→∞
(
−𝑥 + 1
𝑥
) (
2𝑥 + 1
𝑥
) (
4𝑥 − 6
𝑥
)
 
20𝑥3 + 2
𝑥3
 
 
 
= lim
𝑥→∞
(−
𝑥
𝑥
+
1
𝑥
) (2
𝑥
𝑥
+
1
𝑥
) (4
𝑥
𝑥
−
6
𝑥
)
 20
𝑥3
𝑥3
+ 2 
1
𝑥3= lim
𝑥→∞
(−1 +
1
𝑥
) (2 +
1
𝑥
) (4 − 6
1
𝑥
)
 20 + 2 (
1
𝑥
)
3 
 
 
=
lim
𝑥→∞
((−1 +
1
𝑥
) (2 +
1
𝑥
) (4 − 6
1
𝑥
))
lim
𝑥→∞
(20 + 2 (
1
𝑥
)
3
)
 
 
 
=
lim
𝑥→∞
(−1 +
1
𝑥
) lim
𝑥→∞
(2 +
1
𝑥
) lim
𝑥→∞
(4 − 6
1
𝑥
)
lim
𝑥→∞
20 + lim 2 (
1
𝑥
)
3
𝑥→∞
 
 
 
=
( lim
𝑥→∞
− 1 + lim
𝑥→∞
1
𝑥
) ( lim
𝑥→∞
2 + lim
𝑥→∞
1
𝑥
) ( lim
𝑥→∞
4 − lim
𝑥→∞
6
1
𝑥
)
lim
𝑥→∞
20 + 2 lim
𝑥→∞
(
1
𝑥
)
3 
 
=
( lim
𝑥→∞
− 1 + lim
𝑥→∞
1
𝑥
) ( lim
𝑥→∞
2 + lim
𝑥→∞
1
𝑥
) ( lim
𝑥→∞
4 − 6 lim
𝑥→∞
1
𝑥
)
( lim
𝑥→∞
20 + 2 ( lim
𝑥→∞
1
𝑥
)
3
)
 
 
 
=
(−1 + 0)(2 + 0)(4 − 0)
(20 + 2(0)3)
 
 
=
(−1)(2)(4)
(20)
 
=
−8
20
= −
2
5
 
 
 
 
 
 
 INSTITUTO POLITÉCNICO NACIONAL 
ESIME CULHUACAN 
Academia de Matemáticas 
 
RAMIREZ ORTIZ MARÍA VERÓNICA 
RAMIREZ CASTELLANOS ERNESTINA CONCEPCIÓN 
102 
 
Calculo de Limites. 
Fecha: _______________ 
 
 
 
 
10) lim
𝑥→∞
(2𝑥−3)2
3𝑥2+𝑥−1
=
∞
∞
 
Utilizando regla.. lim
𝑥→∞
(2𝑥−3)2
3𝑥2+𝑥−1
= lim
𝑥→∞
2(2𝑥−3)1(2)
6𝑥+1
= lim
𝑥→∞
4(2𝑥−3)1
6𝑥+1
= lim
𝑥→∞
8𝑥−12
6𝑥+1
= lim
𝑥→∞
8
6
 = lim
𝑥→∞
4
3
= 
4
3
 
lim
𝑥→∞
(2𝑥 − 3)2
3𝑥2 + 𝑥 − 1
 = lim
𝑥→∞
(2𝑥 − 3)2
(𝑥)2
3𝑥2 + 𝑥 − 1
𝑥2
 
 
 
= lim
𝑥→∞
(
2𝑥 − 3
𝑥
)
2
3𝑥2 + 𝑥 − 1
𝑥2
 
 
= lim
𝑥→∞
(2
𝑥
𝑥
− 3
1
𝑥
)
2
3
𝑥2
𝑥2
+
𝑥
𝑥2
−
1
𝑥2
 
 
= lim
𝑥→∞
(2 − 3
1
𝑥
)
2
3 +
1
𝑥
− (
1
𝑥
)
2 
 
 
=
lim
𝑥→∞
(2 − 3
1
𝑥
)
2
lim
𝑥→∞
(3 +
1
𝑥
− (
1
𝑥
)
2
)
 
 
 
=
(lim2
𝑥→∞
− lim
𝑥→∞
3
1
𝑥
)
2
lim
𝑥→∞
3 + lim
𝑥→∞
1
𝑥
− lim
𝑥→∞
(
1
𝑥
)
2 
 
 
=
( lim
𝑥→∞
2 − 3 lim
𝑥→∞
1
𝑥
)
2
lim
𝑥→∞
3 + lim
𝑥→∞
1
𝑥
− ( lim
𝑥→∞
1
𝑥
)
2 
 
 
=
(2 − 0)2
3 + 0 − 0
 
 
 
=
(2)2
3
 
 
 
=
4
3
 
 
 
 INSTITUTO POLITÉCNICO NACIONAL 
ESIME CULHUACAN 
Academia de Matemáticas 
 
RAMIREZ ORTIZ MARÍA VERÓNICA 
RAMIREZ CASTELLANOS ERNESTINA CONCEPCIÓN 
103 
 
Calculo de Limites. 
Fecha: _______________ 
 
 
 Ejemplos III. 𝐥𝐢𝐦
𝒙→∞
 (Funciones Irracionales) 
 
 
11) lim
𝑥→∞
2𝑥2−3𝑥−4
√𝑥4+1 
=
∞
∞
 
lim
𝑥→∞
 
2𝑥2 − 3𝑥 − 4
√𝑥4 + 1 
 = lim
𝑥→∞
2𝑥2 − 3𝑥 − 4
𝑥2
√𝑥4 + 1
𝑥2
 
 
 
= lim
𝑥→∞
2𝑥2 − 3𝑥 − 4
𝑥2
√𝑥4 + 1
√(𝑥2)2
 
 
 
= lim
𝑥→∞
2𝑥2 − 3𝑥 − 4
𝑥2
√𝑥
4 + 1
𝑥4
 
 
= lim
𝑥→∞
2
𝑥2
𝑥2
−
3𝑥
𝑥2
−
4
𝑥2
√𝑥
4 
𝑥4
+
1 
𝑥4
 
 
= lim
𝑥→∞
2 − 3
1
𝑥
 − 4 
1
𝑥2
√1 +
1
𝑥4
 
 
= lim
𝑥→∞
2 − 3
1
𝑥
 − 4 (
1
𝑥
)
2
√1 + (
1
𝑥
)
4
 
 
=
lim
𝑥→∞
(2 − 3
1
𝑥
 − 4 (
1
𝑥
)
2
)
lim
𝑥→∞
√1 + (
1
𝑥
)
4
 
 
 
= 
lim
𝑥→∞
2 − 3 lim
𝑥→∞
1
𝑥
 − 4 ( lim
𝑥→∞
 
1
 𝑥
)
2
√lim
𝑥→∞
1 + ( lim
𝑥→∞
1
𝑥
)
4
 
 
= 
2 − 3 (0) − 4(0)2
√1 + (0)4
=
2
1
= 2 
 
 
 Conocimiento Previo: 𝑥
𝑛
𝑚 = √𝑥𝑛
𝑚
 
 INSTITUTO POLITÉCNICO NACIONAL 
ESIME CULHUACAN 
Academia de Matemáticas 
 
RAMIREZ ORTIZ MARÍA VERÓNICA 
RAMIREZ CASTELLANOS ERNESTINA CONCEPCIÓN 
104 
 
Calculo de Limites 
Fecha: _______________ 
 
 
12) lim
𝑥→∞
4𝑥3−𝑥−1
√𝑥6−3 
=
∞
∞
 
 
Lim
𝑥→∞
4𝑥3 − 𝑥 − 1
√𝑥6 − 3 
 = lim
𝑥→∞
4𝑥3 − 𝑥 − 1
𝑥3
√𝑥6 − 3 
𝑥3
 
 
 
= lim
𝑥→∞
4𝑥3 − 𝑥 − 1
𝑥3
√𝑥6 − 3 
√(𝑥3)2
 
 
 
= lim
𝑥→∞
4𝑥3
𝑥3
 − 
𝑥
𝑥3
 − 
1
𝑥3
√𝑥
6 − 3
𝑥6
 
 
 
= lim
𝑥→∞
4
𝑥3
𝑥3
 − 
𝑥
𝑥3
 − 
1
𝑥3
√𝑥
6
𝑥6
−
3
𝑥6
 
 
 
= lim
𝑥→∞
4 − 
1
𝑥2
 − 
1
𝑥3
√1 − 3
1
𝑥6
 
 
 
= 
lim
𝑥→∞
(4 − (
1
𝑥
)
2
 − (
1
𝑥
)
3
)
lim
𝑥→∞
√1 − 3 (
1
𝑥
)
6
 
 
 
= 
lim
𝑥→∞
4 − lim
𝑥→∞
 (
1
𝑥
)
2
 − lim
𝑥→∞
(
1
𝑥
)
3
√lim
𝑥→∞
1 − 3 lim
𝑥→∞
 (
1
𝑥
)
6
 
 
 
=
lim
𝑥→∞
4 − ( lim
𝑥→∞
1
𝑥
)
2
− ( lim
𝑥→∞
1
𝑥
)
3
√lim
𝑥→∞
1 − 3 ( lim
𝑥→∞
1
𝑥
)
6
 
 
 
= 
4 − 0 − 0
√1 − 3(0)
= 
4
1
= 4 
 INSTITUTO POLITÉCNICO NACIONAL 
ESIME CULHUACAN 
Academia de Matemáticas 
 
RAMIREZ ORTIZ MARÍA VERÓNICA 
RAMIREZ CASTELLANOS ERNESTINA CONCEPCIÓN 
105 
 
Calculo de Limites 
Fecha: _______________ 
 
 
 
 
13) lim
𝑥→∞
𝑥−4
𝑥+ √𝑥
3 = 
∞
∞
 
 
 
 
 
lim
𝑥→∞
𝑥 − 4
𝑥 + √𝑥
3 = lim𝑥→∞
𝑥 − 4
𝑥
𝑥 + √𝑥
3
𝑥
 
 
= lim
𝑥→∞
𝑥
𝑥
 − 
4
𝑥
𝑥
𝑥
 + 
√𝑥
3
√𝑥3
3
 
 
= lim
𝑥→∞
1 − 4 
1
𝑥
1 + √
𝑥
𝑥3
3
 
 
= lim
𝑥→∞
1 − 4
1
𝑥
1 + √
1
𝑥2
3
 
= 
lim
𝑥→∞
(1 − 4
1
𝑥
)
lim
𝑥→∞
(1 + √
1
𝑥2
3
)
 
 
= 
lim
𝑥→∞
1 − 4 lim
𝑥→∞
 
1
𝑥
lim
𝑥→∞
1 + √ lim
𝑥→∞
 (
1
𝑥
)
23
 
=
lim
𝑥→∞
1 − 4 lim
𝑥→∞
 
1
𝑥
lim
𝑥→∞
1 + √( lim
𝑥→∞
 
1
𝑥
)
23
 
 
=
1 − 4(0)
1 + 0
=
1
1
= 1 
 INSTITUTO POLITÉCNICO NACIONAL 
ESIME CULHUACAN 
Academia de Matemáticas 
 
RAMIREZ ORTIZ MARÍA VERÓNICA 
RAMIREZ CASTELLANOS ERNESTINA CONCEPCIÓN 
106 
 
Calculo de Limites 
Fecha: _______________ 
 
 
 
14) lim
𝑥→∞
√𝑥3−3
5
𝑥4−2
 =
∞
∞
 
 
 
 
lim
𝑥→∞
√𝑥3 − 3
5
𝑥4 − 2
 
= lim
𝑥→∞
√𝑥3 − 3
5
𝑥4
𝑥4 − 2
𝑥4
 
 
 
= lim
𝑥→∞
√𝑥3 − 3
5
√(𝑥4)5
5
𝑥4 − 2
𝑥4
 = lim
𝑥→∞
√𝑥
3 − 3
𝑥20
5
𝑥4
𝑥4
− 
2
𝑥4
 
 
 
 
 
= lim
𝑥→∞
√ 𝑥
3
𝑥20
− 
3
𝑥20
5
1 − 
2
𝑥4
= lim
𝑥→∞
√
1
𝑥17
− 
3
𝑥20
5
1 − 2 
1
𝑥4
 
 
=
lim
𝑥→∞
√
1
𝑥17
− 3
1
𝑥20
5
lim
𝑥→∞
(1−2 
1
𝑥4
)
 
 
 
 
=
√lim 
𝑥→∞
(
1
𝑥
)
17
− lim
𝑥→∞
 3 (
1
𝑥
)
205
lim
𝑥→∞
1 − 2 lim
𝑥→∞
(
1
𝑥
)
4 
 
 
 
=
√( lim
𝑥→∞
 
1
𝑥
)
17
− 3( lim
𝑥→∞
 
1
𝑥
)
205
lim
𝑥→∞
1 − 2 ( lim
𝑥→∞
 
1
𝑥
)
4 
 
 
=
√0 − 0
5
1 − 2(0)
= 0 
 
 
 
 
 INSTITUTO POLITÉCNICO NACIONAL 
ESIME CULHUACAN 
Academia de Matemáticas 
 
RAMIREZ ORTIZ MARÍA VERÓNICA 
RAMIREZ CASTELLANOS ERNESTINA CONCEPCIÓN 
107 
 
Calculo de Limites 
Fecha: _______________ 
 
 
15) lim
𝑥→∞
√7𝑥+4
3
2𝑥−3
 =
∞
∞
 
 
 
 
 
 
 
 
lim
𝑥→∞
√7𝑥 + 4
3
2𝑥 − 3
 = lim
𝑥→∞
 
√7𝑥 + 4
3
𝑥
2𝑥 − 3
𝑥
 
 
= lim
𝑥→∞
 
√7𝑥 + 4
3
√𝑥3
3
2𝑥 − 3
𝑥
 
 
= lim
𝑥→∞
√
7𝑥 + 4
𝑥3
3
2𝑥 − 3
𝑥
 
 
= lim
𝑥→∞
√
7𝑥
𝑥3
+
4
𝑥3
 
3
2
𝑥
𝑥
− 3 
1
𝑥
 
 
= lim
𝑥→∞
√7
1
𝑥2
+ 4
1
𝑥3
 
3
2 − 3 
1
𝑥
 
 
= lim
𝑥→∞
√7 (
1
𝑥
)
2
+ 4(
1
𝑥
)
3
 
3
2 − 3
1
𝑥
 
 
=
√7 lim
𝑥→∞
(
1
𝑥
)
2
+ 4 lim
𝑥→∞
(
1
𝑥
)
3
 
3
lim
𝑥→∞
2 − 3 lim
𝑥→∞
1
𝑥
 
 
=
√7 ( lim
𝑥→∞
 
1
𝑥
)
2
+ 4( lim
𝑥→∞
 
1
𝑥
)
3
 
3
lim
𝑥→∞
2 − 3 lim
𝑥→∞
1
𝑥
 
 
= 
√7(0) + 4(0) 
3
2 − 3(0)
=
0
2
= 0 
 INSTITUTO POLITÉCNICO NACIONAL 
ESIME CULHUACAN 
Academia de Matemáticas 
 
RAMIREZ ORTIZ MARÍA VERÓNICA 
RAMIREZ CASTELLANOS ERNESTINA CONCEPCIÓN 
108 
 
Calculo de Limites 
Fecha: _______________ 
 
 
 
Ejemplos IV racionalización 
 
16) lim
𝑥→1
 
√𝑥−1
𝑥−1
= 
√1−1
1−1
= 
1−1
1−1
= 
0
0
 𝑥2 − 𝑦2 = (𝑥 − 𝑦)(𝑥 + 𝑦) 
 
lim
𝑥→1
 
√𝑥 − 1
𝑥 − 1
 = lim
𝑥→1
 
√𝑥 − 1
𝑥 − 1
∗ 
√𝑥 + 1
√𝑥 + 1
 
 
= lim
𝑥→1
 [
 (√𝑥)
2
− 12 
(𝑥 − 1)(√𝑥 + 1)
] 
 
= lim
𝑥→1
 [(𝑥 − 1) 
1
(𝑥 − 1)
(
1
√𝑥 + 1
)] 
 
= lim
𝑥→1
 
1
√𝑥 + 1
 
=
1
√1 + 1
 =
1
1 + 1
 
 
=
1
2 
 
 
17) lim
𝑥→4
√𝑥−2
𝑥−4
=
√4−2
4−4
=
2−2
4−4
= 
0
0
 
 
lim
𝑥→4
√𝑥 − 2
𝑥 − 4
 = lim
𝑥→4
 
√𝑥 − 2
𝑥 − 4
∗
√𝑥 + 2
√𝑥 + 2
 
 
= lim
𝑥→4
 
 (√𝑥)
2
− 22 
(𝑥 − 4)(√𝑥 + 2)
 
 
= lim
𝑥→4
(𝑥 − 4) 
 1 
(𝑥 − 4)
(
 1 
√𝑥 + 2
) 
 
= lim
𝑥→4
1
√𝑥 + 2
 
 
=
1
√4 + 2
 
 
=
1
4 
 
 
 
 INSTITUTO POLITÉCNICO NACIONAL 
ESIME CULHUACAN 
Academia de Matemáticas 
 
RAMIREZ ORTIZ MARÍA VERÓNICA 
RAMIREZ CASTELLANOS ERNESTINA CONCEPCIÓN 
109 
 
Calculo de Limites 
Fecha: _______________ 
 
 
18) lim
𝑥→4
 
3−√5+𝑥
1−√5−𝑥
=
3−√5+4
1−√5−4=
3−√9
1−√1
=
3−3
1−1
=
0
0
 
lim
𝑥→4
 
3 − √5 + 𝑥
1 − √5 − 𝑥
 = lim
𝑥→4
[
3 − √5 + 𝑥
1 − √5 − 𝑥
∗
3 + √5 + 𝑥
3 + √5 + 𝑥
] 
 
 
= lim
𝑥→4
[
9 − (5 + 𝑥)
(1 − √5 − 𝑥)(3 + √5 + 𝑥)
] = lim
𝑥→4
[
9 − 5 − 𝑥
(1 − √5 − 𝑥)(3 + √5 + 𝑥)
] 
 
 
 
= lim
𝑥→4
 [
4 − 𝑥
(3 + √5 + 𝑥)(1 − √5 − 𝑥)
] [
1 + √5 − 𝑥
1 + √5 − 𝑥
] 
 
 
= lim 
𝑥→4
(4 − 𝑥)(1 + √5 − 𝑥)
(1 − √5 − 𝑥)(1 + √5 − 𝑥)(3 + √5 + 𝑥)
 
 
 
= lim [
𝑥→4
(4 − 𝑥)(1 + √5 − 𝑥)
(1 − (5 − 𝑥))(3 + √5 + 𝑥)
] = lim 
𝑥→4
(4 − 𝑥)(1 + √5 − 𝑥)
(1 − 5 + 𝑥)(3 + √5 + 𝑥)
 
 
 
= lim
𝑥→4
 [
(4 − 𝑥)(1 + √5 − 𝑥)
(−4 + 𝑥)(3 + √5 + 𝑥)
] = lim
𝑥→4
 [
(4 − 𝑥)(1 + √5 − 𝑥)
−1(4 − 𝑥)(3 + √5 + 𝑥)
] 
 
 
= lim
𝑥→4
− 1 [
1 + √5 − 𝑥
3 + √5 + 𝑥
] 
 
 
= −lim
𝑥→4
[
1 + √5 − 𝑥
3 + √5 + 𝑥
] 
 
 
= −
1 + √5 − 4
3 + √5 + 4
 
 
 
= −
1 + √1
3 + √9
 = −
1 + 1
3 + 3
 
 
 
= −
2
6
 
= −
1
3
 
 
 
 
 
 INSTITUTO POLITÉCNICO NACIONAL 
ESIME CULHUACAN 
Academia de Matemáticas 
 
RAMIREZ ORTIZ MARÍA VERÓNICA 
RAMIREZ CASTELLANOS ERNESTINA CONCEPCIÓN 
110 
 
Calculo de Limites 
Fecha: _______________ 
 
19) lim
𝑥→∞
(√𝑥 + 𝑎 − √𝑥) = ∞ 
lim
𝑥→∞
(√𝑥 + 𝑎 − √𝑥) = lim
𝑥→∞
(√𝑥 + 𝑎 − √𝑥) ∗
√𝑥 + 𝑎 + √𝑥
√𝑥 + 𝑎 + √𝑥
 
 
 
= lim
𝑥→∞
[
𝑥 + 𝑎 − 𝑥
√𝑥 + 𝑎 + √𝑥
] 
 
 = lim
𝑥→∞
[
𝑎
√𝑥 + 𝑎 + √𝑥
] 
 
 
= lim
𝑥→∞
[
 
 
 
 
𝑎
√𝑥
√𝑥 + 𝑎 + √𝑥
√𝑥 ]
 
 
 
 
 
 
 
= lim
𝑥→∞
[
 
 
 
 √𝑎
2
√𝑥
√𝑥 + 𝑎 + √𝑥
√𝑥 ]
 
 
 
 
 = lim
𝑥→∞
[
 
 
 
 √𝑎
2
√𝑥
√𝑥 + 𝑎
√𝑥
+
√𝑥
√𝑥 ]
 
 
 
 
 
 
 
= lim
𝑥→∞
[
 
 
 √
𝑎2
𝑥
√
𝑥 + 𝑎
𝑥
+ 1]
 
 
 
 = lim
𝑥→∞
[
 
 
 √
𝑎2
𝑥
√
𝑥
𝑥
+
𝑎
𝑥
+ 1
]
 
 
 
 
 
= lim
𝑥→∞
[
 
 
 √
𝑎2
𝑥
√1 +
𝑎
𝑥
+ 1
]
 
 
 
= 
lim
𝑥→∞
√𝑎
2
𝑥
lim
𝑥→∞
(√1 +
𝑎
𝑥
+ 1)
 
 
 
=
 √ lim
𝑥→∞
𝑎2
𝑥
√ lim
𝑥→∞
(1 + 𝑎
1
𝑥
) + lim
𝑥→∞
1
 
 
=
 √𝑎2 lim
𝑥→∞
1
𝑥
√ lim
𝑥→∞
1 + 𝑎 lim
𝑥→∞
(
1
𝑥
) + lim
𝑥→∞
1
 
 
=
 √𝑎20
√1 + 𝑎(0) + 1
 
 
=
 0
√1 + 1
 
=
 0
1 + 1
=
0
2
 
 
= 0 
 
 
 INSTITUTO POLITÉCNICO NACIONAL 
ESIME CULHUACAN 
Academia de Matemáticas 
 
RAMIREZ ORTIZ MARÍA VERÓNICA 
RAMIREZ CASTELLANOS ERNESTINA CONCEPCIÓN 
111 
 
Calculo de Limites 
Fecha: _______________ 
 
 
 
20) lim
𝑥→∞
 𝑥(√𝑥2 + 1 − 𝑥) = ∞ 
lim
𝑥→∞
 𝑥 (√𝑥2 + 1 − 𝑥) = lim
𝑥→∞
 𝑥 [(√𝑥2 + 1 − 𝑥)] 1 
 
 
= lim
𝑥→∞
 𝑥 [(√𝑥2 + 1 − 𝑥) (
√𝑥2 + 1 + 𝑥
√𝑥2 + 1 + 𝑥
)] 
 
 
= lim
𝑥→∞
 𝑥 [
𝑥2 + 1 − 𝑥2
√𝑥2 + 1 + 𝑥
] 
 
 = lim
𝑥→∞
 
𝑥
√𝑥2 + 1 + 𝑥
 
 
 
= lim
𝑥→∞
 
𝑥
𝑥
√𝑥2 + 1 + 𝑥
𝑥
 = lim
𝑥→∞
 
𝑥
𝑥
√𝑥2 + 1
√𝑥2
+
𝑥
𝑥
 
 
 
= lim
𝑥→∞
 
1
√𝑥
2 + 1
𝑥2
+ 1
 
 
 
= lim
𝑥→∞
 
1
√𝑥
2
𝑥2
+
1
𝑥2
+ 1
 
 
= lim
𝑥→∞
 
1
√1 + (
1
𝑥
)
2
+ 1
 
 
 
=
lim
𝑥→∞
1
lim
𝑥→∞
(√1 + (
1
𝑥
)
2
+ 1)
 
 
 
= 
lim
𝑥→∞
1
√lim
𝑥→∞
1 + lim
𝑥→∞
(
1
𝑥
)
2
+ lim
𝑥→∞
1
 
 
 
= 
lim
𝑥→∞
1
√lim
𝑥→∞
1 + ( lim
𝑥→∞
 
1
𝑥
)
2
+ lim
𝑥→∞
1
 
 
=
1
√1 + 0 + 1
=
1
√1 + 1
=
1
1 + 1
=
1
2
 
 INSTITUTO POLITÉCNICO NACIONAL 
ESIME CULHUACAN 
Academia de Matemáticas 
 
RAMIREZ ORTIZ MARÍA VERÓNICA 
RAMIREZ CASTELLANOS ERNESTINA CONCEPCIÓN 
112 
 
Ejemplos V 
Calculo de Limites 
Fecha: _______________ 
 
 
 
 
 lim
𝑥→0
(
𝑆𝑒𝑛 𝑥
𝑥
) = 1, es un límite que se utiliza con mucha frecuencia 
 
21) lim
𝑥→0
𝑆𝑒𝑛 5𝑥
𝑥
=
𝑆𝑒𝑛 0
0
=
0
0
 
 
Utilizando regla de H… lim
𝑥→0
𝑆𝑒𝑛 5𝑥
𝑥
= lim
𝑥→0
5𝐶𝑜𝑠(5𝑥)
1
= lim
𝑥→0
5𝐶𝑜𝑠(5𝑥) = 5 𝐶𝑜𝑠 (0) = 5(1) = 5 
 
lim
𝑥→0
𝑆𝑒𝑛 5𝑥
𝑥
 = lim
𝑥→0
(5 
1
5
)
(𝑆𝑒𝑛 5𝑥)
𝑥
 
 
= lim
𝑥→0
5 (
𝑆𝑒𝑛 5𝑥
5𝑥
) 
= 5 lim
𝑥→0
(
𝑆𝑒𝑛 5𝑥
5𝑥
) 
 
= 5(lim
𝑥→0
𝑆𝑒𝑛 5𝑥
5𝑥
) 
 = 5 
 
 
22. lim
𝑥→0
𝑆𝑒𝑛 7𝑥
2𝑥
=
𝑆𝑒𝑛 0
2(0)
=
0
0
 
lim
𝑥→0
𝑆𝑒𝑛 7𝑥
2𝑥
 = lim
𝑥→0
({
𝑆𝑒𝑛 7𝑥
𝑥
} (
1
7
)) (
1
2
) (7) 
 
= lim
𝑥→0
(
𝑆𝑒𝑛 7𝑥
7𝑥
) (
7
2
) 
 
=
7
2
lim
𝑥→0
(
𝑆𝑒𝑛 7𝑥
7𝑥
) 
 
=
7
2
 
 
 
22. lim
𝑛→0
(
𝑆𝑒𝑛 9 𝑥
𝑥
) =
0
0
 
lim
𝑥→0
(
𝑆𝑒𝑛 9 𝑥
𝑥
) = lim
𝑥→0
9 (
𝑆𝑒𝑛 9 𝑥
9 𝑥
) 
 
= 9 (lim
𝑥→0
𝑆𝑒𝑛 9𝑥
9 𝑥
) 
 = 9 
 INSTITUTO POLITÉCNICO NACIONAL 
ESIME CULHUACAN 
Academia de Matemáticas 
 
RAMIREZ ORTIZ MARÍA VERÓNICA 
RAMIREZ CASTELLANOS ERNESTINA CONCEPCIÓN 
113 
 
Calculo de Limites 
Fecha: _______________ 
 
 
 
 
23. lim
𝑥→0
𝑆𝑒𝑛 𝜋 𝑥
𝑆𝑒𝑛 3 𝜋 𝑥
=
𝑆𝑒𝑛 𝜋 (0)
𝑆𝑒𝑛 3 𝜋 (0)
=
𝑆𝑒𝑛 0
𝑆𝑒𝑛 0
=
0
0
 
 
lim
𝑥→0
𝑆𝑒𝑛 𝜋 𝑥
𝑆𝑒𝑛 3 𝜋 𝑥
= lim
𝑥→0
(𝑆𝑒𝑛 𝜋 𝑥)
(𝑆𝑒𝑛 3 𝜋 𝑥)
 
(𝜋 𝑥
1
𝜋 𝑥
)
(3𝜋 𝑥
1
3𝜋 𝑥
)
 
 
 
 
= lim
𝑥→0
(𝑆𝑒𝑛 𝜋 𝑥) (
1
𝜋 𝑥
) (𝜋 𝑥)
(𝑆𝑒𝑛 3 𝜋 𝑥) (
1
3𝜋 𝑥
) (3𝜋 𝑥)
 
 
= lim
𝑥→0
(
𝑆𝑒𝑛 𝜋 𝑥
𝜋 𝑥
)
(
𝑆𝑒𝑛 3 𝜋 𝑥
3𝜋 𝑥
)
 (
𝜋 𝑥
𝜋 𝑥
 
1
3 
 ) 
 
 
= lim
𝑥→0
(
𝑆𝑒𝑛 𝜋 𝑥
𝜋 𝑥
𝑆𝑒𝑛 3𝜋𝑥
3𝜋𝑥
)(
1
3 
) 
 
 
=
1
3 
lim
𝑥→0
(
𝑆𝑒𝑛 𝜋 𝑥
𝜋 𝑥
𝑆𝑒𝑛 3𝜋𝑥
3𝜋𝑥
) 
 
 
=
1
3 
lim
𝑥→0
(
𝑆𝑒𝑛 𝜋 𝑥
 𝜋 𝑥
)
lim
𝑥→0
(
𝑆𝑒𝑛 3𝜋𝑥
 3𝜋𝑥
)
 
 
 
=
1
3 
1
1
 
 
 
= (
1
3 
) (1) 
 
= 
1
3 
 
 
 
 
 
 INSTITUTO POLITÉCNICO NACIONAL 
ESIME CULHUACAN 
Academia de Matemáticas 
 
RAMIREZ ORTIZ MARÍA VERÓNICA 
RAMIREZ CASTELLANOS ERNESTINA CONCEPCIÓN 
114 
 
 
 
24. lim 
𝑥→0
 𝑥𝑆𝑒𝑛
1
𝑥
= 0𝑆𝑒𝑛
1
0
 
 
lim
𝑥→0
𝑥 𝑆𝑒𝑛
1
𝑥
 = lim 
𝑥→0
𝑥 (𝑆𝑒𝑛
1
𝑥
) (1) 
 
= lim 
𝑥→0
𝑥 (𝑆𝑒𝑛
1
𝑥
)(
1
𝑥
 
1
1
𝑥
) 
 
= lim 
𝑥→0
𝑥 (
𝑆𝑒𝑛 
1
𝑥
1
𝑥
)(
1
𝑥
) 
 
= lim 
𝑥→0
(𝑥
1
𝑥
)(
𝑆𝑒𝑛 
1
𝑥
1
𝑥
) 
 
= lim 
𝑥→0
(1) (
𝑆𝑒𝑛 
1
𝑥
1
𝑥
) 
 
= lim 
𝑥→0
(
𝑆𝑒𝑛 
1
𝑥
1
𝑥
) 
 = 1 
 
 
 INSTITUTO POLITÉCNICO NACIONAL 
ESIME CULHUACAN 
Academia de Matemáticas 
 
RAMIREZ ORTIZ MARÍA VERÓNICA 
RAMIREZ CASTELLANOS ERNESTINA CONCEPCIÓN 
115 
 
Calculo de Limites 
Fecha: _______________ 
 
 
 
 
25. lim
𝑥→0
1−𝐶𝑜𝑠𝑥
𝑥
=
1−𝑐𝑜𝑠0
0
=
1−1
0
=
0
0
 
lim
𝑥→0
1 − 𝐶𝑜𝑠𝑥
𝑥
 = lim
𝑥→0
[
1 − 𝐶𝑜𝑠𝑥
𝑥
] [1] = lim
𝑥→0
[
1 − 𝐶𝑜𝑠𝑥
𝑥
] [(1 + 𝐶𝑜𝑠𝑥) (
1
1 + 𝐶𝑜𝑠𝑥
)] 
 
 
 = lim
𝑥→0
 (
12−(𝐶𝑜𝑠𝑥)2
𝑥
) (
1
1+𝐶𝑜𝑠𝑥
) 
 
= lim
𝑥→0
 
1 − 𝐶𝑜𝑠2𝑥
𝑥(1 + 𝐶𝑜𝑠𝑥)
 
 
 = lim
𝑥→0
 
𝑆𝑒𝑛2𝑥
𝑥(1+𝑐𝑜𝑠𝑥)
 porque 𝑆𝑒𝑛2𝑥 = 1 − 𝐶𝑜𝑠2𝑥 
 
 
= lim
𝑥→0
[[
(𝑆𝑒𝑛 𝑥)2
𝑥
] (
1
1 + 𝑐𝑜𝑠𝑥
)] 
 
 
= lim
𝑥→0
 
𝑥
𝑥
 (
(𝑆𝑒𝑛 𝑥)2
𝑥
) [
1
1 + 𝐶𝑜𝑠𝑥
] 
 
 
= lim
𝑥→0
𝑥 (
(𝑆𝑒𝑛 𝑥)2
(𝑥)2
) [
1
1 + 𝐶𝑜𝑠𝑥
] 
 
 
= lim
𝑥→0
 𝑥 (
𝑆𝑒𝑛 𝑥
𝑥
)
2
[
1
1 + 𝐶𝑜𝑠𝑥
] 
 
 
= (lim
𝑥→0
 𝑥) (lim
𝑥→0
 (
𝑆𝑒𝑛 𝑥
𝑥
)
2
) (lim
𝑥→0
1
1 + 𝐶𝑜𝑠𝑥
) 
 
 
= (lim
𝑥→0
 𝑥) (lim 
𝑥→0
𝑠𝑒𝑛 𝑥
𝑥
)
2
(lim
𝑥→0
1
1 + 𝐶𝑜𝑠𝑥
) 
 
 
= (lim
𝑥→0
 𝑥) (lim 
𝑥→0
𝑠𝑒𝑛 𝑥
𝑥
)
2
(
1
1 + 𝐶𝑜𝑠 (0)
) 
 
 
= (0)(1) (
1
2
) 
 
= 0 
 
 
 
 INSTITUTO POLITÉCNICO NACIONAL 
ESIME CULHUACAN 
Academia de Matemáticas 
 
RAMIREZ ORTIZ MARÍA VERÓNICA 
RAMIREZ CASTELLANOS ERNESTINA CONCEPCIÓN 
116 
 
Calculo de Limites 
Fecha: _______________ 
 
 
 
27. lim
ℎ→0
𝑠𝑒𝑛(𝑥+ℎ)−𝑠𝑒𝑛 𝑥
ℎ
=
𝑠𝑒𝑛(𝑥+0)−𝑠𝑒𝑛 𝑥
0
=
𝑠𝑒𝑛(𝑥)−𝑠𝑒𝑛 𝑥
0
= 
0
0
 
 
 
 
 
 
lim
ℎ→0
𝑆𝑒𝑛(𝑥 + ℎ) − 𝑆𝑒𝑛 𝑥
ℎ
 = lim
ℎ→0
[
𝑆𝑒𝑛 𝑥 Cos ℎ + 𝑆𝑒𝑛 ℎ 𝐶𝑜𝑠𝑥 − 𝑆𝑒𝑛 𝑥
ℎ
] 
 
 
= lim
ℎ→0
[
𝑆𝑒𝑛 𝑥 Cos ℎ − 𝑆𝑒𝑛 𝑥 + 𝑆𝑒𝑛 ℎ 𝐶𝑜𝑠𝑥
ℎ
] 
 
 
= lim
ℎ→0
[
(𝐶𝑜𝑠(ℎ) − 1)𝑆𝑒𝑛𝑥 + 𝑆𝑒𝑛(ℎ)𝐶𝑜𝑠(𝑥)
ℎ
] 
 
 
= lim
ℎ→0
[
(𝐶𝑜𝑠(ℎ) − 1)𝑆𝑒𝑛𝑥
ℎ
+
𝑆𝑒𝑛(ℎ)𝐶𝑜𝑠(𝑥)
ℎ
] 
 
 
= lim
ℎ→0
[
(𝐶𝑜𝑠ℎ − 1)
ℎ
𝑆𝑒𝑛𝑥 +
𝑆𝑒𝑛ℎ
ℎ
𝐶𝑜𝑠𝑥] 
 
Sabemos que:lim
𝑥→0
1 − 𝐶𝑜𝑠𝑥
𝑥
= 0 
lim
𝑥→0
(
(−1)(𝐶𝑜𝑠 𝑥 − 1)
𝑥
) = 0 
lim
𝑥→0
(
𝐶𝑜𝑠 𝑥 − 1
𝑥
) = −0 = 0 
lim
ℎ→0
(
𝐶𝑜𝑠 ℎ − 1
ℎ
) = 0 
 
 
 
= 𝑆𝑒𝑛 𝑥 lim
ℎ→0
[
𝐶𝑜𝑠 ℎ − 1
ℎ
] + 𝐶𝑜𝑠 𝑥 lim
ℎ→0
𝑆𝑒𝑛 ℎ
ℎ
 
 
= 𝑆𝑒𝑛𝑥 lim
ℎ→0
[
𝐶𝑜𝑠 ℎ − 1
ℎ
] + 𝐶𝑜𝑠𝑥 lim
ℎ→0
𝑆𝑒𝑛 ℎ
ℎ
 
 
 = (𝑆𝑒𝑛𝑥)(0) + (𝐶𝑜𝑠𝑥)(1) 
 
 = 𝐶𝑜𝑠𝑥 
 INSTITUTO POLITÉCNICO NACIONAL 
ESIME CULHUACAN 
Academia de Matemáticas 
 
RAMIREZ ORTIZ MARÍA VERÓNICA 
RAMIREZ CASTELLANOS ERNESTINA CONCEPCIÓN 
117 
 
Calculo de Limites 
Fecha: _______________ 
 
 
 
28. lim
𝑥→0
1−√𝑐𝑜𝑠𝑥
𝑥2
=
1−√𝑐𝑜𝑠0
02
=
1−√1
0
= 
1−1
0
=
0
0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lim
𝑥→0
1 − √𝐶𝑜𝑠𝑥
𝑥2
 = lim
𝑥→0
[
1 − √𝐶𝑜𝑠𝑥
𝑥2
 ] (1) 
 
 
= lim
𝑥→0
[
1 − √𝐶𝑜𝑠𝑥
𝑥2
 ] (1 + √𝐶𝑜𝑠𝑥 
1
1 + √𝐶𝑜𝑠𝑥
) 
 
 
= lim
𝑥→0
[
12 − (√𝐶𝑜𝑠𝑥)
2
𝑥2
 ] (
1
1 + √𝐶𝑜𝑠𝑥
) 
 
 
 
 
= lim
𝑥→0
(
1 − 𝑐𝑜𝑠𝑥
𝑥2
)(
1
1 + √𝐶𝑜𝑠𝑥
) 
 
 
= lim
𝑥→0
(
1 − 𝑐𝑜𝑠𝑥
𝑥2
) (1) (
1
1 + √𝐶𝑜𝑠𝑥
) 
 
 
= lim
𝑥→0
 (
1 − 𝐶𝑜𝑠𝑥
𝑥2
) (1 + 𝐶𝑜𝑠𝑥 
1
1 + 𝐶𝑜𝑠𝑥
) (
1
1 + √𝐶𝑜𝑠𝑥
) 
 
 
= lim
𝑥→0
 (
12 − (𝐶𝑜𝑠𝑥)2
𝑥2
)(
1
1 + 𝐶𝑜𝑠𝑥
) (
1
1 + √𝐶𝑜𝑠𝑥
) 
 
 
= lim
𝑥→0
(
1 − 𝐶𝑜𝑠2 𝑥
𝑥2
)(
1
1 + 𝐶𝑜𝑠 𝑥
) (
1
1 + √𝐶𝑜𝑠𝑥
) 
 
 
= lim
𝑥→0
(
𝑆𝑒𝑛2 𝑥
𝑥2
)(
1
1 + 𝐶𝑜𝑠𝑥
) (
1
1 + √𝐶𝑜𝑠𝑥
) 
 
 
= lim
𝑥→0
(
𝑆𝑒𝑛 𝑥
𝑥
)
2
(
1
1 + 𝐶𝑜𝑠𝑥
) (
1
1 + √𝐶𝑜𝑠𝑥
) 
 
= lim
𝑥→0
(
𝑆𝑒𝑛 𝑥
𝑥
)
2
 lim
𝑥→0
(
1
1 + 𝐶𝑜𝑠𝑥
) lim
𝑥→0
(
1
1 + √𝐶𝑜𝑠𝑥
) 
 
= (lim
𝑥→0
𝑆𝑒𝑛 𝑥
𝑥
)
2
 lim
𝑥→0
(
1
1 + 𝐶𝑜𝑠𝑥
) lim
𝑥→0
(
1
1 + √𝐶𝑜𝑠𝑥
) 
= (1) (
1
1 + 𝐶𝑜𝑠 0
) (
1
1 + √𝐶𝑜𝑠0
) 
= 
 
= (1)
1
2
(
1
2
) =
1
4
 
 INSTITUTO POLITÉCNICO NACIONAL 
ESIME CULHUACAN 
Academia de Matemáticas 
 
RAMIREZ ORTIZ MARÍA VERÓNICA 
RAMIREZ CASTELLANOS ERNESTINA CONCEPCIÓN 
118 
 
Calculo de Limites. 
Fecha: _______________ 
 
 
 
 
29. lim
𝑥→0
√1+𝑆𝑒𝑛𝑥−√1−𝑆𝑒𝑛𝑥
𝑥
= 
√1+𝑆𝑒𝑛0 −√1−𝑆𝑒𝑛0
0
=
√1−√1
0
=
0
0
 
 
 
 
lim
𝑥→0
√1 + 𝑆𝑒𝑛𝑥 − √1 − 𝑆𝑒𝑛𝑥
𝑥
 = lim
𝑥→0
[
√1 + 𝑆𝑒𝑛𝑥 − √1 − 𝑆𝑒𝑛𝑥
𝑥2
 ] (1) 
 
 
= lim
𝑥→0
[
√1 + 𝑆𝑒𝑛𝑥 − √1 − 𝑆𝑒𝑛𝑥
𝑥2
 ] (
√1 + 𝑆𝑒𝑛𝑥 + √1 − 𝑆𝑒𝑛𝑥
√1 + 𝑆𝑒𝑛𝑥 + √1 − 𝑆𝑒𝑛𝑥
) 
 
 
= lim
𝑥→0
[
(√1 + 𝑆𝑒𝑛𝑥)
2
− (√1 − 𝑆𝑒𝑛𝑥)
2
𝑥2
 ] (
1
√1 + 𝑆𝑒𝑛𝑥 + √1 − 𝑆𝑒𝑛𝑥
) 
 
 
= lim
𝑥→0
[
(1 + 𝑆𝑒𝑛𝑥) − (1 − 𝑆𝑒𝑛𝑥)
𝑥
] (
1
√1 + 𝑆𝑒𝑛𝑥 + √1 − 𝑆𝑒𝑛𝑥
) 
 
 
= lim
𝑥→0
[
1 + 𝑆𝑒𝑛 𝑥 − 1 + 𝑆𝑒𝑛 𝑥
𝑥
] (
1
√1 + 𝑆𝑒𝑛𝑥 + √1 − 𝑆𝑒𝑛𝑥
) 
 
 
= lim
𝑥→0
[
2𝑠𝑒𝑛𝑥
𝑥
] (
1
√1 + 𝑆𝑒𝑛𝑥 + √1 − 𝑆𝑒𝑛𝑥
) 
 
 
= lim
𝑥→0
(
𝑠𝑒𝑛𝑥
𝑥
)(
2
√1 + 𝑆𝑒𝑛𝑥 + √1 − 𝑆𝑒𝑛𝑥
) 
 
 
= lim
𝑥→0
[
𝑆𝑒𝑛𝑥
𝑥
] . lim
𝑥→0
(
2
√1 + 𝑆𝑒𝑛𝑥 + √1 − 𝑆𝑒𝑛𝑥
) 
 
 
= (1) (
2
√1 + 𝑠𝑒𝑛0 + √1 − 𝑠𝑒𝑛0
) 
 
 
=
2
√1 + 0 + √1 + 0
=
2
√1 + √1
=
2
1 + 1
 
 
=
2
2
 
 
 = 1

Continuar navegando

Contenido elegido para ti

8 pag.
CALCULO DE LIMITES (2)

User badge image

YOBERTH FERNANDO CCARITA GUZMAN

1 pag.
CALCULO (14)

UADY

User badge image

novelocarlos512

2 pag.
GUIA 3 Límites

SIN SIGLA

User badge image

Tomas Guajardo

6 pag.
Lïmites - Rodriguez Espinoza Abraham

User badge image

Desafío México Veintitrés

1 pag.
CALCULO (20)

UADY

User badge image

Angel Antonio

Otros materiales